Bifurcation phenomena in non-smooth dynamical systems

The aim of the paper is to give an overview of bifurcation phenomena which are typical for non-smooth dynamical systems. A small number of well-chosen examples of various kinds of non-smooth systems will be presented, followed by a discussion of the bifurcation phenomena in hand and a brief introduc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of mechanics, A, Solids A, Solids, 2006-07, Vol.25 (4), p.595-616
Hauptverfasser: Leine, R.I., van Campen, D.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 616
container_issue 4
container_start_page 595
container_title European journal of mechanics, A, Solids
container_volume 25
creator Leine, R.I.
van Campen, D.H.
description The aim of the paper is to give an overview of bifurcation phenomena which are typical for non-smooth dynamical systems. A small number of well-chosen examples of various kinds of non-smooth systems will be presented, followed by a discussion of the bifurcation phenomena in hand and a brief introduction to the mathematical tools which have been developed to study these phenomena. The bifurcations of equilibria in two planar non-smooth continuous systems are analysed by using a generalised Jacobian matrix. A mechanical example of a non-autonomous Filippov system, belonging to the class of differential inclusions, is studied and shows a number of remarkable discontinuous bifurcations of periodic solutions. A generalisation of the Floquet theory is introduced which explains bifurcation phenomena in differential inclusions. Lastly, the dynamics of the Woodpecker Toy is analysed with a one-dimensional Poincaré map method. The dynamics is greatly influenced by simultaneous impacts which cause discontinuous bifurcations.
doi_str_mv 10.1016/j.euromechsol.2006.04.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29096037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0997753806000507</els_id><sourcerecordid>29096037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-10c9e30b4b1b6cb38438bcf0fc90f6213f6abf2beb3c3f999b6c056fb6f9c5763</originalsourceid><addsrcrecordid>eNqNkD1PwzAURS0EEqXwH8IAW8KznTjxCBVfUiUWmC371VZdJXaxU6T-e1IVCUamt5x3r-4h5JpCRYGKu01ldykOFtc59hUDEBXUFUB9Qma0a3nZsq45JTOQsi3bhnfn5CLnDQAwYHRGmgfvdgn16GMotmsbpqygCx-KEEOZhxjHdbHaBz141H2R93m0Q74kZ0732V793Dn5eHp8X7yUy7fn18X9skTesbGkgNJyMLWhRqDhXc07gw4cSnCCUe6ENo4ZazhyJ6WcKGiEM8JJbFrB5-T2mLtN8XNn86gGn9H2vQ427rJiEqQA3k6gPIKYYs7JOrVNftBpryiogyi1UX9EqYMoBbWaRE2_Nz8lOk8bXdIBff4N6KAFSQ8diyNnp8Vf3iaV0duAduWTxVGtov9H2zdoLIWz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29096037</pqid></control><display><type>article</type><title>Bifurcation phenomena in non-smooth dynamical systems</title><source>Elsevier ScienceDirect Journals</source><creator>Leine, R.I. ; van Campen, D.H.</creator><creatorcontrib>Leine, R.I. ; van Campen, D.H.</creatorcontrib><description>The aim of the paper is to give an overview of bifurcation phenomena which are typical for non-smooth dynamical systems. A small number of well-chosen examples of various kinds of non-smooth systems will be presented, followed by a discussion of the bifurcation phenomena in hand and a brief introduction to the mathematical tools which have been developed to study these phenomena. The bifurcations of equilibria in two planar non-smooth continuous systems are analysed by using a generalised Jacobian matrix. A mechanical example of a non-autonomous Filippov system, belonging to the class of differential inclusions, is studied and shows a number of remarkable discontinuous bifurcations of periodic solutions. A generalisation of the Floquet theory is introduced which explains bifurcation phenomena in differential inclusions. Lastly, the dynamics of the Woodpecker Toy is analysed with a one-dimensional Poincaré map method. The dynamics is greatly influenced by simultaneous impacts which cause discontinuous bifurcations.</description><identifier>ISSN: 0997-7538</identifier><identifier>EISSN: 1873-7285</identifier><identifier>DOI: 10.1016/j.euromechsol.2006.04.004</identifier><language>eng</language><publisher>Paris: Elsevier Masson SAS</publisher><subject>Bifurcation ; Discontinuity ; Exact sciences and technology ; Friction ; Fundamental areas of phenomenology (including applications) ; Impact ; Measure differential inclusions ; Physics ; Solid mechanics</subject><ispartof>European journal of mechanics, A, Solids, 2006-07, Vol.25 (4), p.595-616</ispartof><rights>2006 Elsevier SAS</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-10c9e30b4b1b6cb38438bcf0fc90f6213f6abf2beb3c3f999b6c056fb6f9c5763</citedby><cites>FETCH-LOGICAL-c382t-10c9e30b4b1b6cb38438bcf0fc90f6213f6abf2beb3c3f999b6c056fb6f9c5763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0997753806000507$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18070917$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Leine, R.I.</creatorcontrib><creatorcontrib>van Campen, D.H.</creatorcontrib><title>Bifurcation phenomena in non-smooth dynamical systems</title><title>European journal of mechanics, A, Solids</title><description>The aim of the paper is to give an overview of bifurcation phenomena which are typical for non-smooth dynamical systems. A small number of well-chosen examples of various kinds of non-smooth systems will be presented, followed by a discussion of the bifurcation phenomena in hand and a brief introduction to the mathematical tools which have been developed to study these phenomena. The bifurcations of equilibria in two planar non-smooth continuous systems are analysed by using a generalised Jacobian matrix. A mechanical example of a non-autonomous Filippov system, belonging to the class of differential inclusions, is studied and shows a number of remarkable discontinuous bifurcations of periodic solutions. A generalisation of the Floquet theory is introduced which explains bifurcation phenomena in differential inclusions. Lastly, the dynamics of the Woodpecker Toy is analysed with a one-dimensional Poincaré map method. The dynamics is greatly influenced by simultaneous impacts which cause discontinuous bifurcations.</description><subject>Bifurcation</subject><subject>Discontinuity</subject><subject>Exact sciences and technology</subject><subject>Friction</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Impact</subject><subject>Measure differential inclusions</subject><subject>Physics</subject><subject>Solid mechanics</subject><issn>0997-7538</issn><issn>1873-7285</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNkD1PwzAURS0EEqXwH8IAW8KznTjxCBVfUiUWmC371VZdJXaxU6T-e1IVCUamt5x3r-4h5JpCRYGKu01ldykOFtc59hUDEBXUFUB9Qma0a3nZsq45JTOQsi3bhnfn5CLnDQAwYHRGmgfvdgn16GMotmsbpqygCx-KEEOZhxjHdbHaBz141H2R93m0Q74kZ0732V793Dn5eHp8X7yUy7fn18X9skTesbGkgNJyMLWhRqDhXc07gw4cSnCCUe6ENo4ZazhyJ6WcKGiEM8JJbFrB5-T2mLtN8XNn86gGn9H2vQ427rJiEqQA3k6gPIKYYs7JOrVNftBpryiogyi1UX9EqYMoBbWaRE2_Nz8lOk8bXdIBff4N6KAFSQ8diyNnp8Vf3iaV0duAduWTxVGtov9H2zdoLIWz</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>Leine, R.I.</creator><creator>van Campen, D.H.</creator><general>Elsevier Masson SAS</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20060701</creationdate><title>Bifurcation phenomena in non-smooth dynamical systems</title><author>Leine, R.I. ; van Campen, D.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-10c9e30b4b1b6cb38438bcf0fc90f6213f6abf2beb3c3f999b6c056fb6f9c5763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Bifurcation</topic><topic>Discontinuity</topic><topic>Exact sciences and technology</topic><topic>Friction</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Impact</topic><topic>Measure differential inclusions</topic><topic>Physics</topic><topic>Solid mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leine, R.I.</creatorcontrib><creatorcontrib>van Campen, D.H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>European journal of mechanics, A, Solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leine, R.I.</au><au>van Campen, D.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bifurcation phenomena in non-smooth dynamical systems</atitle><jtitle>European journal of mechanics, A, Solids</jtitle><date>2006-07-01</date><risdate>2006</risdate><volume>25</volume><issue>4</issue><spage>595</spage><epage>616</epage><pages>595-616</pages><issn>0997-7538</issn><eissn>1873-7285</eissn><abstract>The aim of the paper is to give an overview of bifurcation phenomena which are typical for non-smooth dynamical systems. A small number of well-chosen examples of various kinds of non-smooth systems will be presented, followed by a discussion of the bifurcation phenomena in hand and a brief introduction to the mathematical tools which have been developed to study these phenomena. The bifurcations of equilibria in two planar non-smooth continuous systems are analysed by using a generalised Jacobian matrix. A mechanical example of a non-autonomous Filippov system, belonging to the class of differential inclusions, is studied and shows a number of remarkable discontinuous bifurcations of periodic solutions. A generalisation of the Floquet theory is introduced which explains bifurcation phenomena in differential inclusions. Lastly, the dynamics of the Woodpecker Toy is analysed with a one-dimensional Poincaré map method. The dynamics is greatly influenced by simultaneous impacts which cause discontinuous bifurcations.</abstract><cop>Paris</cop><pub>Elsevier Masson SAS</pub><doi>10.1016/j.euromechsol.2006.04.004</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0997-7538
ispartof European journal of mechanics, A, Solids, 2006-07, Vol.25 (4), p.595-616
issn 0997-7538
1873-7285
language eng
recordid cdi_proquest_miscellaneous_29096037
source Elsevier ScienceDirect Journals
subjects Bifurcation
Discontinuity
Exact sciences and technology
Friction
Fundamental areas of phenomenology (including applications)
Impact
Measure differential inclusions
Physics
Solid mechanics
title Bifurcation phenomena in non-smooth dynamical systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A54%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bifurcation%20phenomena%20in%20non-smooth%20dynamical%20systems&rft.jtitle=European%20journal%20of%20mechanics,%20A,%20Solids&rft.au=Leine,%20R.I.&rft.date=2006-07-01&rft.volume=25&rft.issue=4&rft.spage=595&rft.epage=616&rft.pages=595-616&rft.issn=0997-7538&rft.eissn=1873-7285&rft_id=info:doi/10.1016/j.euromechsol.2006.04.004&rft_dat=%3Cproquest_cross%3E29096037%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29096037&rft_id=info:pmid/&rft_els_id=S0997753806000507&rfr_iscdi=true