Bifurcation phenomena in non-smooth dynamical systems
The aim of the paper is to give an overview of bifurcation phenomena which are typical for non-smooth dynamical systems. A small number of well-chosen examples of various kinds of non-smooth systems will be presented, followed by a discussion of the bifurcation phenomena in hand and a brief introduc...
Gespeichert in:
Veröffentlicht in: | European journal of mechanics, A, Solids A, Solids, 2006-07, Vol.25 (4), p.595-616 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 616 |
---|---|
container_issue | 4 |
container_start_page | 595 |
container_title | European journal of mechanics, A, Solids |
container_volume | 25 |
creator | Leine, R.I. van Campen, D.H. |
description | The aim of the paper is to give an overview of bifurcation phenomena which are typical for non-smooth dynamical systems. A small number of well-chosen examples of various kinds of non-smooth systems will be presented, followed by a discussion of the bifurcation phenomena in hand and a brief introduction to the mathematical tools which have been developed to study these phenomena. The bifurcations of equilibria in two planar non-smooth continuous systems are analysed by using a generalised Jacobian matrix. A mechanical example of a non-autonomous Filippov system, belonging to the class of differential inclusions, is studied and shows a number of remarkable discontinuous bifurcations of periodic solutions. A generalisation of the Floquet theory is introduced which explains bifurcation phenomena in differential inclusions. Lastly, the dynamics of the Woodpecker Toy is analysed with a one-dimensional Poincaré map method. The dynamics is greatly influenced by simultaneous impacts which cause discontinuous bifurcations. |
doi_str_mv | 10.1016/j.euromechsol.2006.04.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29096037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0997753806000507</els_id><sourcerecordid>29096037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-10c9e30b4b1b6cb38438bcf0fc90f6213f6abf2beb3c3f999b6c056fb6f9c5763</originalsourceid><addsrcrecordid>eNqNkD1PwzAURS0EEqXwH8IAW8KznTjxCBVfUiUWmC371VZdJXaxU6T-e1IVCUamt5x3r-4h5JpCRYGKu01ldykOFtc59hUDEBXUFUB9Qma0a3nZsq45JTOQsi3bhnfn5CLnDQAwYHRGmgfvdgn16GMotmsbpqygCx-KEEOZhxjHdbHaBz141H2R93m0Q74kZ0732V793Dn5eHp8X7yUy7fn18X9skTesbGkgNJyMLWhRqDhXc07gw4cSnCCUe6ENo4ZazhyJ6WcKGiEM8JJbFrB5-T2mLtN8XNn86gGn9H2vQ427rJiEqQA3k6gPIKYYs7JOrVNftBpryiogyi1UX9EqYMoBbWaRE2_Nz8lOk8bXdIBff4N6KAFSQ8diyNnp8Vf3iaV0duAduWTxVGtov9H2zdoLIWz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29096037</pqid></control><display><type>article</type><title>Bifurcation phenomena in non-smooth dynamical systems</title><source>Elsevier ScienceDirect Journals</source><creator>Leine, R.I. ; van Campen, D.H.</creator><creatorcontrib>Leine, R.I. ; van Campen, D.H.</creatorcontrib><description>The aim of the paper is to give an overview of bifurcation phenomena which are typical for non-smooth dynamical systems. A small number of well-chosen examples of various kinds of non-smooth systems will be presented, followed by a discussion of the bifurcation phenomena in hand and a brief introduction to the mathematical tools which have been developed to study these phenomena. The bifurcations of equilibria in two planar non-smooth continuous systems are analysed by using a generalised Jacobian matrix. A mechanical example of a non-autonomous Filippov system, belonging to the class of differential inclusions, is studied and shows a number of remarkable discontinuous bifurcations of periodic solutions. A generalisation of the Floquet theory is introduced which explains bifurcation phenomena in differential inclusions. Lastly, the dynamics of the Woodpecker Toy is analysed with a one-dimensional Poincaré map method. The dynamics is greatly influenced by simultaneous impacts which cause discontinuous bifurcations.</description><identifier>ISSN: 0997-7538</identifier><identifier>EISSN: 1873-7285</identifier><identifier>DOI: 10.1016/j.euromechsol.2006.04.004</identifier><language>eng</language><publisher>Paris: Elsevier Masson SAS</publisher><subject>Bifurcation ; Discontinuity ; Exact sciences and technology ; Friction ; Fundamental areas of phenomenology (including applications) ; Impact ; Measure differential inclusions ; Physics ; Solid mechanics</subject><ispartof>European journal of mechanics, A, Solids, 2006-07, Vol.25 (4), p.595-616</ispartof><rights>2006 Elsevier SAS</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-10c9e30b4b1b6cb38438bcf0fc90f6213f6abf2beb3c3f999b6c056fb6f9c5763</citedby><cites>FETCH-LOGICAL-c382t-10c9e30b4b1b6cb38438bcf0fc90f6213f6abf2beb3c3f999b6c056fb6f9c5763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0997753806000507$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18070917$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Leine, R.I.</creatorcontrib><creatorcontrib>van Campen, D.H.</creatorcontrib><title>Bifurcation phenomena in non-smooth dynamical systems</title><title>European journal of mechanics, A, Solids</title><description>The aim of the paper is to give an overview of bifurcation phenomena which are typical for non-smooth dynamical systems. A small number of well-chosen examples of various kinds of non-smooth systems will be presented, followed by a discussion of the bifurcation phenomena in hand and a brief introduction to the mathematical tools which have been developed to study these phenomena. The bifurcations of equilibria in two planar non-smooth continuous systems are analysed by using a generalised Jacobian matrix. A mechanical example of a non-autonomous Filippov system, belonging to the class of differential inclusions, is studied and shows a number of remarkable discontinuous bifurcations of periodic solutions. A generalisation of the Floquet theory is introduced which explains bifurcation phenomena in differential inclusions. Lastly, the dynamics of the Woodpecker Toy is analysed with a one-dimensional Poincaré map method. The dynamics is greatly influenced by simultaneous impacts which cause discontinuous bifurcations.</description><subject>Bifurcation</subject><subject>Discontinuity</subject><subject>Exact sciences and technology</subject><subject>Friction</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Impact</subject><subject>Measure differential inclusions</subject><subject>Physics</subject><subject>Solid mechanics</subject><issn>0997-7538</issn><issn>1873-7285</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNkD1PwzAURS0EEqXwH8IAW8KznTjxCBVfUiUWmC371VZdJXaxU6T-e1IVCUamt5x3r-4h5JpCRYGKu01ldykOFtc59hUDEBXUFUB9Qma0a3nZsq45JTOQsi3bhnfn5CLnDQAwYHRGmgfvdgn16GMotmsbpqygCx-KEEOZhxjHdbHaBz141H2R93m0Q74kZ0732V793Dn5eHp8X7yUy7fn18X9skTesbGkgNJyMLWhRqDhXc07gw4cSnCCUe6ENo4ZazhyJ6WcKGiEM8JJbFrB5-T2mLtN8XNn86gGn9H2vQ427rJiEqQA3k6gPIKYYs7JOrVNftBpryiogyi1UX9EqYMoBbWaRE2_Nz8lOk8bXdIBff4N6KAFSQ8diyNnp8Vf3iaV0duAduWTxVGtov9H2zdoLIWz</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>Leine, R.I.</creator><creator>van Campen, D.H.</creator><general>Elsevier Masson SAS</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20060701</creationdate><title>Bifurcation phenomena in non-smooth dynamical systems</title><author>Leine, R.I. ; van Campen, D.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-10c9e30b4b1b6cb38438bcf0fc90f6213f6abf2beb3c3f999b6c056fb6f9c5763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Bifurcation</topic><topic>Discontinuity</topic><topic>Exact sciences and technology</topic><topic>Friction</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Impact</topic><topic>Measure differential inclusions</topic><topic>Physics</topic><topic>Solid mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leine, R.I.</creatorcontrib><creatorcontrib>van Campen, D.H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>European journal of mechanics, A, Solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leine, R.I.</au><au>van Campen, D.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bifurcation phenomena in non-smooth dynamical systems</atitle><jtitle>European journal of mechanics, A, Solids</jtitle><date>2006-07-01</date><risdate>2006</risdate><volume>25</volume><issue>4</issue><spage>595</spage><epage>616</epage><pages>595-616</pages><issn>0997-7538</issn><eissn>1873-7285</eissn><abstract>The aim of the paper is to give an overview of bifurcation phenomena which are typical for non-smooth dynamical systems. A small number of well-chosen examples of various kinds of non-smooth systems will be presented, followed by a discussion of the bifurcation phenomena in hand and a brief introduction to the mathematical tools which have been developed to study these phenomena. The bifurcations of equilibria in two planar non-smooth continuous systems are analysed by using a generalised Jacobian matrix. A mechanical example of a non-autonomous Filippov system, belonging to the class of differential inclusions, is studied and shows a number of remarkable discontinuous bifurcations of periodic solutions. A generalisation of the Floquet theory is introduced which explains bifurcation phenomena in differential inclusions. Lastly, the dynamics of the Woodpecker Toy is analysed with a one-dimensional Poincaré map method. The dynamics is greatly influenced by simultaneous impacts which cause discontinuous bifurcations.</abstract><cop>Paris</cop><pub>Elsevier Masson SAS</pub><doi>10.1016/j.euromechsol.2006.04.004</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0997-7538 |
ispartof | European journal of mechanics, A, Solids, 2006-07, Vol.25 (4), p.595-616 |
issn | 0997-7538 1873-7285 |
language | eng |
recordid | cdi_proquest_miscellaneous_29096037 |
source | Elsevier ScienceDirect Journals |
subjects | Bifurcation Discontinuity Exact sciences and technology Friction Fundamental areas of phenomenology (including applications) Impact Measure differential inclusions Physics Solid mechanics |
title | Bifurcation phenomena in non-smooth dynamical systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A54%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bifurcation%20phenomena%20in%20non-smooth%20dynamical%20systems&rft.jtitle=European%20journal%20of%20mechanics,%20A,%20Solids&rft.au=Leine,%20R.I.&rft.date=2006-07-01&rft.volume=25&rft.issue=4&rft.spage=595&rft.epage=616&rft.pages=595-616&rft.issn=0997-7538&rft.eissn=1873-7285&rft_id=info:doi/10.1016/j.euromechsol.2006.04.004&rft_dat=%3Cproquest_cross%3E29096037%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29096037&rft_id=info:pmid/&rft_els_id=S0997753806000507&rfr_iscdi=true |