Verification of infinite-state dynamic systems using approximate quotient transition systems

This paper deals with computational methods for verifying properties of labeled infinite-state transition systems using quotient transition system (QTS). A QTS is a conservative approximation to the infinite-state transition system based on a finite partition of the infinite state space. For univers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2001-09, Vol.46 (9), p.1401-1410
Hauptverfasser: Chutinan, A., Krogh, B.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1410
container_issue 9
container_start_page 1401
container_title IEEE transactions on automatic control
container_volume 46
creator Chutinan, A.
Krogh, B.H.
description This paper deals with computational methods for verifying properties of labeled infinite-state transition systems using quotient transition system (QTS). A QTS is a conservative approximation to the infinite-state transition system based on a finite partition of the infinite state space. For universal specifications, positive verification for a QTS implies the specification is true for the infinite-state transition system. We introduce the approximate QTS or AQTS. The paper presents a sufficient condition for an AQTS to be a bisimulation of the infinite state transition system. An AQTS bisimulation is essentially equivalent to the infinite-state system for the purposes of verification. It is well known, however, that finite-state bisimulations do not exist for most hybrid systems of practical interest. Therefore, the use of the AQTS for verification of universal specifications is proposed and illustrated with an example. This approach has been implemented in a tool for computer-aided verification of a general class of hybrid systems.
doi_str_mv 10.1109/9.948467
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_29092458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>948467</ieee_id><sourcerecordid>29092458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-c2726733c6729c5bbe5cc856330a2ea69f8a7d9c6e5f071c17455c5259d6921c3</originalsourceid><addsrcrecordid>eNqN0UtLAzEQAOAgCtYqePa0eFAvW5NsJo-jFF8geFFPwpKmWUnpZtskC_bfmz7w4EFlDsMwH8Mwg9ApwSNCsLpWI8Uk42IPDQiALCnQah8NMCayVFTyQ3QU4yyXnDEyQO9vNrjGGZ1c54uuKZxvnHfJljHpZIvpyuvWmSKuYrJtLPro_EehF4vQfbp2LZZ9l5z1qUhB--g2c3b6GB00eh7tyS4P0evd7cv4oXx6vn8c3zyVhlFIpaGCclFVhguqDEwmFoyRwKsKa2o1V43UYqoMt9BgQQwRDMAABTXlihJTDdHldm7eatnbmOrWRWPnc-1t18daEcZBAaFZXvwqqcKKMpB_Q8mFUP-BAleUcpzh-Q846_rg811qKRkwSdkaXW2RCV2MwTb1IuQzh1VNcL3-b51j899Mz7bUWWu_2a75BYRioAE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884548240</pqid></control><display><type>article</type><title>Verification of infinite-state dynamic systems using approximate quotient transition systems</title><source>IEEE Electronic Library (IEL)</source><creator>Chutinan, A. ; Krogh, B.H.</creator><creatorcontrib>Chutinan, A. ; Krogh, B.H.</creatorcontrib><description>This paper deals with computational methods for verifying properties of labeled infinite-state transition systems using quotient transition system (QTS). A QTS is a conservative approximation to the infinite-state transition system based on a finite partition of the infinite state space. For universal specifications, positive verification for a QTS implies the specification is true for the infinite-state transition system. We introduce the approximate QTS or AQTS. The paper presents a sufficient condition for an AQTS to be a bisimulation of the infinite state transition system. An AQTS bisimulation is essentially equivalent to the infinite-state system for the purposes of verification. It is well known, however, that finite-state bisimulations do not exist for most hybrid systems of practical interest. Therefore, the use of the AQTS for verification of universal specifications is proposed and illustrated with an example. This approach has been implemented in a tool for computer-aided verification of a general class of hybrid systems.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/9.948467</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation ; Dynamical systems ; Dynamics ; Equivalence ; Formal verification ; Hybrid systems ; Laboratories ; Logic ; Mathematical analysis ; Quotients ; Reachability analysis ; Specifications ; State-space methods ; Studies ; Sufficient conditions ; Tree graphs</subject><ispartof>IEEE transactions on automatic control, 2001-09, Vol.46 (9), p.1401-1410</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-c2726733c6729c5bbe5cc856330a2ea69f8a7d9c6e5f071c17455c5259d6921c3</citedby><cites>FETCH-LOGICAL-c425t-c2726733c6729c5bbe5cc856330a2ea69f8a7d9c6e5f071c17455c5259d6921c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/948467$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/948467$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chutinan, A.</creatorcontrib><creatorcontrib>Krogh, B.H.</creatorcontrib><title>Verification of infinite-state dynamic systems using approximate quotient transition systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>This paper deals with computational methods for verifying properties of labeled infinite-state transition systems using quotient transition system (QTS). A QTS is a conservative approximation to the infinite-state transition system based on a finite partition of the infinite state space. For universal specifications, positive verification for a QTS implies the specification is true for the infinite-state transition system. We introduce the approximate QTS or AQTS. The paper presents a sufficient condition for an AQTS to be a bisimulation of the infinite state transition system. An AQTS bisimulation is essentially equivalent to the infinite-state system for the purposes of verification. It is well known, however, that finite-state bisimulations do not exist for most hybrid systems of practical interest. Therefore, the use of the AQTS for verification of universal specifications is proposed and illustrated with an example. This approach has been implemented in a tool for computer-aided verification of a general class of hybrid systems.</description><subject>Approximation</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Equivalence</subject><subject>Formal verification</subject><subject>Hybrid systems</subject><subject>Laboratories</subject><subject>Logic</subject><subject>Mathematical analysis</subject><subject>Quotients</subject><subject>Reachability analysis</subject><subject>Specifications</subject><subject>State-space methods</subject><subject>Studies</subject><subject>Sufficient conditions</subject><subject>Tree graphs</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0UtLAzEQAOAgCtYqePa0eFAvW5NsJo-jFF8geFFPwpKmWUnpZtskC_bfmz7w4EFlDsMwH8Mwg9ApwSNCsLpWI8Uk42IPDQiALCnQah8NMCayVFTyQ3QU4yyXnDEyQO9vNrjGGZ1c54uuKZxvnHfJljHpZIvpyuvWmSKuYrJtLPro_EehF4vQfbp2LZZ9l5z1qUhB--g2c3b6GB00eh7tyS4P0evd7cv4oXx6vn8c3zyVhlFIpaGCclFVhguqDEwmFoyRwKsKa2o1V43UYqoMt9BgQQwRDMAABTXlihJTDdHldm7eatnbmOrWRWPnc-1t18daEcZBAaFZXvwqqcKKMpB_Q8mFUP-BAleUcpzh-Q846_rg811qKRkwSdkaXW2RCV2MwTb1IuQzh1VNcL3-b51j899Mz7bUWWu_2a75BYRioAE</recordid><startdate>20010901</startdate><enddate>20010901</enddate><creator>Chutinan, A.</creator><creator>Krogh, B.H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope><scope>F28</scope></search><sort><creationdate>20010901</creationdate><title>Verification of infinite-state dynamic systems using approximate quotient transition systems</title><author>Chutinan, A. ; Krogh, B.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-c2726733c6729c5bbe5cc856330a2ea69f8a7d9c6e5f071c17455c5259d6921c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Approximation</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Equivalence</topic><topic>Formal verification</topic><topic>Hybrid systems</topic><topic>Laboratories</topic><topic>Logic</topic><topic>Mathematical analysis</topic><topic>Quotients</topic><topic>Reachability analysis</topic><topic>Specifications</topic><topic>State-space methods</topic><topic>Studies</topic><topic>Sufficient conditions</topic><topic>Tree graphs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chutinan, A.</creatorcontrib><creatorcontrib>Krogh, B.H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chutinan, A.</au><au>Krogh, B.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Verification of infinite-state dynamic systems using approximate quotient transition systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2001-09-01</date><risdate>2001</risdate><volume>46</volume><issue>9</issue><spage>1401</spage><epage>1410</epage><pages>1401-1410</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>This paper deals with computational methods for verifying properties of labeled infinite-state transition systems using quotient transition system (QTS). A QTS is a conservative approximation to the infinite-state transition system based on a finite partition of the infinite state space. For universal specifications, positive verification for a QTS implies the specification is true for the infinite-state transition system. We introduce the approximate QTS or AQTS. The paper presents a sufficient condition for an AQTS to be a bisimulation of the infinite state transition system. An AQTS bisimulation is essentially equivalent to the infinite-state system for the purposes of verification. It is well known, however, that finite-state bisimulations do not exist for most hybrid systems of practical interest. Therefore, the use of the AQTS for verification of universal specifications is proposed and illustrated with an example. This approach has been implemented in a tool for computer-aided verification of a general class of hybrid systems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/9.948467</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2001-09, Vol.46 (9), p.1401-1410
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_miscellaneous_29092458
source IEEE Electronic Library (IEL)
subjects Approximation
Dynamical systems
Dynamics
Equivalence
Formal verification
Hybrid systems
Laboratories
Logic
Mathematical analysis
Quotients
Reachability analysis
Specifications
State-space methods
Studies
Sufficient conditions
Tree graphs
title Verification of infinite-state dynamic systems using approximate quotient transition systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A51%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Verification%20of%20infinite-state%20dynamic%20systems%20using%20approximate%20quotient%20transition%20systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Chutinan,%20A.&rft.date=2001-09-01&rft.volume=46&rft.issue=9&rft.spage=1401&rft.epage=1410&rft.pages=1401-1410&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/9.948467&rft_dat=%3Cproquest_RIE%3E29092458%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884548240&rft_id=info:pmid/&rft_ieee_id=948467&rfr_iscdi=true