Multi-step influenza forecasting through singular value decomposition and kernel ridge regression with MARCOS-guided gradient-based optimization
This research delves into the significance of influenza outbreaks in public health, particularly the importance of accurate forecasts using weekly Influenza-like illness (ILI) rates. The present work develops a novel hybrid machine-learning model by combining singular value decomposition with kernel...
Gespeichert in:
Veröffentlicht in: | Computers in biology and medicine 2024-02, Vol.169, p.107888, Article 107888 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 107888 |
container_title | Computers in biology and medicine |
container_volume | 169 |
creator | Hongliang, Guo Zhiyao, Zhang Ahmadianfar, Iman Escorcia-Gutierrez, José Aljehane, Nojood O. Li, Chengye |
description | This research delves into the significance of influenza outbreaks in public health, particularly the importance of accurate forecasts using weekly Influenza-like illness (ILI) rates. The present work develops a novel hybrid machine-learning model by combining singular value decomposition with kernel ridge regression (SKRR). In this context, a novel hybrid model known as H-SKRR is developed by combining two robust forecasting approaches, SKRR and ridge regression, which aims to improve multi-step-ahead predictions for weekly ILI rates in Southern and Northern China. The study begins with feature selection via XGBoost in the preprocessing phase, identifying optimal precursor information guided by importance factors. It decomposes the original signal using multivariate variational mode decomposition (MVMD) to address non-stationarity and complexity. H-SKRR is implemented by incorporating significant lagged-time components across sub-components. The aggregated forecasted values from these sub-components generate ILI values for two horizons (i.e., 4-and 7-weekly ahead). Employing the gradient-based optimization (GBO) algorithm fine-tunes model parameters. Furthermore, the deep random vector functional link (dRVFL), Ridge regression, and gated recurrent unit neural network (GRU) models were employed to validate the MVMD-H-SKRR-GBO paradigm's effectiveness. The outcomes, assessed using the MARCOS (Measurement of alternatives and ranking according to compromise solution) method as a multi-criteria decision-making method, highlight the superior accuracy of the MVMD-H-SKRR-GBO model in predicting ILI rates. The results clearly highlight the exceptional performance of the MVMD-H-SKRR-GBO model, with outstanding precision demonstrated by impressive R, RMSE, IA, and U95 % values of 0.946, 0.388, 0.970, and 1.075, respectively, at t + 7.
•Developing a hybrid Kernel Ridge regression with singular value decomposition.•MARCOS method is utilized to specify the best model to forecast influenza rate.•HSKRR effectively predicts influenza transmission, forming a robust and reliable framework.•The positive aspects and limitations of the forecast framework are examined. |
doi_str_mv | 10.1016/j.compbiomed.2023.107888 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2909091233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482523013537</els_id><sourcerecordid>2909091233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-25c76cc7c77bb0df1663d99af3463b72e68e0dd3fe2d60980b15e2c5803dd5743</originalsourceid><addsrcrecordid>eNqFkc1u1DAQgCMEokvhFZAlLlyyjO0k9h7LCgpSq0r8nC3HnmS9JHGwnSL6FDxyHW0rJC7IB8ueb340X1EQClsKtHl33Bo_zq3zI9otA8bzt5BSPik2VIpdCTWvnhYbAAplJVl9VryI8QgAFXB4XpxxSWshhNwUf66XIbkyJpyJm7phwelOk84HNDomN_UkHYJf-gOJ-bEMOpBbnSlicR3BR5ecn4ieLPmBYcKBBGd7JAH7gDGusV8uHcj1xZf9zdeyX5xFS_qgrcMpla2O-enn5EZ3p9dSL4tnnR4ivnq4z4vvHz98238qr24uP-8vrkrDK5FKVhvRGCOMEG0LtqNNw-1upzteNbwVDBuJYC3vkNkGdhJaWiMztQRubS0qfl68PdWdg_-5YExqdNHgMOgJ_RIV20E-lHGe0Tf_oEe_hClPlykGDQPKm0zJE2WCjzFgp-bgRh1-KwpqtaaO6q81tVpTJ2s59fVDg6VdY4-Jj5oy8P4EYN7IrcOgosn7M2hdFpWU9e7_Xe4Bh3Cwzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920620136</pqid></control><display><type>article</type><title>Multi-step influenza forecasting through singular value decomposition and kernel ridge regression with MARCOS-guided gradient-based optimization</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Hongliang, Guo ; Zhiyao, Zhang ; Ahmadianfar, Iman ; Escorcia-Gutierrez, José ; Aljehane, Nojood O. ; Li, Chengye</creator><creatorcontrib>Hongliang, Guo ; Zhiyao, Zhang ; Ahmadianfar, Iman ; Escorcia-Gutierrez, José ; Aljehane, Nojood O. ; Li, Chengye</creatorcontrib><description>This research delves into the significance of influenza outbreaks in public health, particularly the importance of accurate forecasts using weekly Influenza-like illness (ILI) rates. The present work develops a novel hybrid machine-learning model by combining singular value decomposition with kernel ridge regression (SKRR). In this context, a novel hybrid model known as H-SKRR is developed by combining two robust forecasting approaches, SKRR and ridge regression, which aims to improve multi-step-ahead predictions for weekly ILI rates in Southern and Northern China. The study begins with feature selection via XGBoost in the preprocessing phase, identifying optimal precursor information guided by importance factors. It decomposes the original signal using multivariate variational mode decomposition (MVMD) to address non-stationarity and complexity. H-SKRR is implemented by incorporating significant lagged-time components across sub-components. The aggregated forecasted values from these sub-components generate ILI values for two horizons (i.e., 4-and 7-weekly ahead). Employing the gradient-based optimization (GBO) algorithm fine-tunes model parameters. Furthermore, the deep random vector functional link (dRVFL), Ridge regression, and gated recurrent unit neural network (GRU) models were employed to validate the MVMD-H-SKRR-GBO paradigm's effectiveness. The outcomes, assessed using the MARCOS (Measurement of alternatives and ranking according to compromise solution) method as a multi-criteria decision-making method, highlight the superior accuracy of the MVMD-H-SKRR-GBO model in predicting ILI rates. The results clearly highlight the exceptional performance of the MVMD-H-SKRR-GBO model, with outstanding precision demonstrated by impressive R, RMSE, IA, and U95 % values of 0.946, 0.388, 0.970, and 1.075, respectively, at t + 7.
•Developing a hybrid Kernel Ridge regression with singular value decomposition.•MARCOS method is utilized to specify the best model to forecast influenza rate.•HSKRR effectively predicts influenza transmission, forming a robust and reliable framework.•The positive aspects and limitations of the forecast framework are examined.</description><identifier>ISSN: 0010-4825</identifier><identifier>ISSN: 1879-0534</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2023.107888</identifier><identifier>PMID: 38157778</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Accuracy ; Algorithms ; Coronaviruses ; COVID-19 ; Crude oil prices ; Decision making ; Decomposition ; Disease Outbreaks ; Epidemics ; Fatalities ; Feature selection ; Forecasting ; Forecasting techniques ; GBO algorithm ; Generalized linear models ; Health care ; Humans ; Influenza ; Influenza forecasting ; Influenza, Human - epidemiology ; Information systems ; Kernel ridge regression ; Machine learning ; MARCOS method ; Mathematical models ; Medical research ; Multi-step ahead ; Multiple criterion ; Neural networks ; Neural Networks, Computer ; Optimization ; Optimization techniques ; Pandemics ; Public Health ; Regression ; Robustness (mathematics) ; Singular value decomposition ; Singular value decomposition (SVD) ; Time series</subject><ispartof>Computers in biology and medicine, 2024-02, Vol.169, p.107888, Article 107888</ispartof><rights>2023 Elsevier Ltd</rights><rights>Copyright © 2023 Elsevier Ltd. All rights reserved.</rights><rights>2023. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c347t-25c76cc7c77bb0df1663d99af3463b72e68e0dd3fe2d60980b15e2c5803dd5743</cites><orcidid>0000-0003-0518-3187</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010482523013537$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38157778$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hongliang, Guo</creatorcontrib><creatorcontrib>Zhiyao, Zhang</creatorcontrib><creatorcontrib>Ahmadianfar, Iman</creatorcontrib><creatorcontrib>Escorcia-Gutierrez, José</creatorcontrib><creatorcontrib>Aljehane, Nojood O.</creatorcontrib><creatorcontrib>Li, Chengye</creatorcontrib><title>Multi-step influenza forecasting through singular value decomposition and kernel ridge regression with MARCOS-guided gradient-based optimization</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>This research delves into the significance of influenza outbreaks in public health, particularly the importance of accurate forecasts using weekly Influenza-like illness (ILI) rates. The present work develops a novel hybrid machine-learning model by combining singular value decomposition with kernel ridge regression (SKRR). In this context, a novel hybrid model known as H-SKRR is developed by combining two robust forecasting approaches, SKRR and ridge regression, which aims to improve multi-step-ahead predictions for weekly ILI rates in Southern and Northern China. The study begins with feature selection via XGBoost in the preprocessing phase, identifying optimal precursor information guided by importance factors. It decomposes the original signal using multivariate variational mode decomposition (MVMD) to address non-stationarity and complexity. H-SKRR is implemented by incorporating significant lagged-time components across sub-components. The aggregated forecasted values from these sub-components generate ILI values for two horizons (i.e., 4-and 7-weekly ahead). Employing the gradient-based optimization (GBO) algorithm fine-tunes model parameters. Furthermore, the deep random vector functional link (dRVFL), Ridge regression, and gated recurrent unit neural network (GRU) models were employed to validate the MVMD-H-SKRR-GBO paradigm's effectiveness. The outcomes, assessed using the MARCOS (Measurement of alternatives and ranking according to compromise solution) method as a multi-criteria decision-making method, highlight the superior accuracy of the MVMD-H-SKRR-GBO model in predicting ILI rates. The results clearly highlight the exceptional performance of the MVMD-H-SKRR-GBO model, with outstanding precision demonstrated by impressive R, RMSE, IA, and U95 % values of 0.946, 0.388, 0.970, and 1.075, respectively, at t + 7.
•Developing a hybrid Kernel Ridge regression with singular value decomposition.•MARCOS method is utilized to specify the best model to forecast influenza rate.•HSKRR effectively predicts influenza transmission, forming a robust and reliable framework.•The positive aspects and limitations of the forecast framework are examined.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Crude oil prices</subject><subject>Decision making</subject><subject>Decomposition</subject><subject>Disease Outbreaks</subject><subject>Epidemics</subject><subject>Fatalities</subject><subject>Feature selection</subject><subject>Forecasting</subject><subject>Forecasting techniques</subject><subject>GBO algorithm</subject><subject>Generalized linear models</subject><subject>Health care</subject><subject>Humans</subject><subject>Influenza</subject><subject>Influenza forecasting</subject><subject>Influenza, Human - epidemiology</subject><subject>Information systems</subject><subject>Kernel ridge regression</subject><subject>Machine learning</subject><subject>MARCOS method</subject><subject>Mathematical models</subject><subject>Medical research</subject><subject>Multi-step ahead</subject><subject>Multiple criterion</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Pandemics</subject><subject>Public Health</subject><subject>Regression</subject><subject>Robustness (mathematics)</subject><subject>Singular value decomposition</subject><subject>Singular value decomposition (SVD)</subject><subject>Time series</subject><issn>0010-4825</issn><issn>1879-0534</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAQgCMEokvhFZAlLlyyjO0k9h7LCgpSq0r8nC3HnmS9JHGwnSL6FDxyHW0rJC7IB8ueb340X1EQClsKtHl33Bo_zq3zI9otA8bzt5BSPik2VIpdCTWvnhYbAAplJVl9VryI8QgAFXB4XpxxSWshhNwUf66XIbkyJpyJm7phwelOk84HNDomN_UkHYJf-gOJ-bEMOpBbnSlicR3BR5ecn4ieLPmBYcKBBGd7JAH7gDGusV8uHcj1xZf9zdeyX5xFS_qgrcMpla2O-enn5EZ3p9dSL4tnnR4ivnq4z4vvHz98238qr24uP-8vrkrDK5FKVhvRGCOMEG0LtqNNw-1upzteNbwVDBuJYC3vkNkGdhJaWiMztQRubS0qfl68PdWdg_-5YExqdNHgMOgJ_RIV20E-lHGe0Tf_oEe_hClPlykGDQPKm0zJE2WCjzFgp-bgRh1-KwpqtaaO6q81tVpTJ2s59fVDg6VdY4-Jj5oy8P4EYN7IrcOgosn7M2hdFpWU9e7_Xe4Bh3Cwzg</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Hongliang, Guo</creator><creator>Zhiyao, Zhang</creator><creator>Ahmadianfar, Iman</creator><creator>Escorcia-Gutierrez, José</creator><creator>Aljehane, Nojood O.</creator><creator>Li, Chengye</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0518-3187</orcidid></search><sort><creationdate>202402</creationdate><title>Multi-step influenza forecasting through singular value decomposition and kernel ridge regression with MARCOS-guided gradient-based optimization</title><author>Hongliang, Guo ; Zhiyao, Zhang ; Ahmadianfar, Iman ; Escorcia-Gutierrez, José ; Aljehane, Nojood O. ; Li, Chengye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-25c76cc7c77bb0df1663d99af3463b72e68e0dd3fe2d60980b15e2c5803dd5743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Crude oil prices</topic><topic>Decision making</topic><topic>Decomposition</topic><topic>Disease Outbreaks</topic><topic>Epidemics</topic><topic>Fatalities</topic><topic>Feature selection</topic><topic>Forecasting</topic><topic>Forecasting techniques</topic><topic>GBO algorithm</topic><topic>Generalized linear models</topic><topic>Health care</topic><topic>Humans</topic><topic>Influenza</topic><topic>Influenza forecasting</topic><topic>Influenza, Human - epidemiology</topic><topic>Information systems</topic><topic>Kernel ridge regression</topic><topic>Machine learning</topic><topic>MARCOS method</topic><topic>Mathematical models</topic><topic>Medical research</topic><topic>Multi-step ahead</topic><topic>Multiple criterion</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Pandemics</topic><topic>Public Health</topic><topic>Regression</topic><topic>Robustness (mathematics)</topic><topic>Singular value decomposition</topic><topic>Singular value decomposition (SVD)</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hongliang, Guo</creatorcontrib><creatorcontrib>Zhiyao, Zhang</creatorcontrib><creatorcontrib>Ahmadianfar, Iman</creatorcontrib><creatorcontrib>Escorcia-Gutierrez, José</creatorcontrib><creatorcontrib>Aljehane, Nojood O.</creatorcontrib><creatorcontrib>Li, Chengye</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hongliang, Guo</au><au>Zhiyao, Zhang</au><au>Ahmadianfar, Iman</au><au>Escorcia-Gutierrez, José</au><au>Aljehane, Nojood O.</au><au>Li, Chengye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-step influenza forecasting through singular value decomposition and kernel ridge regression with MARCOS-guided gradient-based optimization</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2024-02</date><risdate>2024</risdate><volume>169</volume><spage>107888</spage><pages>107888-</pages><artnum>107888</artnum><issn>0010-4825</issn><issn>1879-0534</issn><eissn>1879-0534</eissn><abstract>This research delves into the significance of influenza outbreaks in public health, particularly the importance of accurate forecasts using weekly Influenza-like illness (ILI) rates. The present work develops a novel hybrid machine-learning model by combining singular value decomposition with kernel ridge regression (SKRR). In this context, a novel hybrid model known as H-SKRR is developed by combining two robust forecasting approaches, SKRR and ridge regression, which aims to improve multi-step-ahead predictions for weekly ILI rates in Southern and Northern China. The study begins with feature selection via XGBoost in the preprocessing phase, identifying optimal precursor information guided by importance factors. It decomposes the original signal using multivariate variational mode decomposition (MVMD) to address non-stationarity and complexity. H-SKRR is implemented by incorporating significant lagged-time components across sub-components. The aggregated forecasted values from these sub-components generate ILI values for two horizons (i.e., 4-and 7-weekly ahead). Employing the gradient-based optimization (GBO) algorithm fine-tunes model parameters. Furthermore, the deep random vector functional link (dRVFL), Ridge regression, and gated recurrent unit neural network (GRU) models were employed to validate the MVMD-H-SKRR-GBO paradigm's effectiveness. The outcomes, assessed using the MARCOS (Measurement of alternatives and ranking according to compromise solution) method as a multi-criteria decision-making method, highlight the superior accuracy of the MVMD-H-SKRR-GBO model in predicting ILI rates. The results clearly highlight the exceptional performance of the MVMD-H-SKRR-GBO model, with outstanding precision demonstrated by impressive R, RMSE, IA, and U95 % values of 0.946, 0.388, 0.970, and 1.075, respectively, at t + 7.
•Developing a hybrid Kernel Ridge regression with singular value decomposition.•MARCOS method is utilized to specify the best model to forecast influenza rate.•HSKRR effectively predicts influenza transmission, forming a robust and reliable framework.•The positive aspects and limitations of the forecast framework are examined.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>38157778</pmid><doi>10.1016/j.compbiomed.2023.107888</doi><orcidid>https://orcid.org/0000-0003-0518-3187</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4825 |
ispartof | Computers in biology and medicine, 2024-02, Vol.169, p.107888, Article 107888 |
issn | 0010-4825 1879-0534 1879-0534 |
language | eng |
recordid | cdi_proquest_miscellaneous_2909091233 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Accuracy Algorithms Coronaviruses COVID-19 Crude oil prices Decision making Decomposition Disease Outbreaks Epidemics Fatalities Feature selection Forecasting Forecasting techniques GBO algorithm Generalized linear models Health care Humans Influenza Influenza forecasting Influenza, Human - epidemiology Information systems Kernel ridge regression Machine learning MARCOS method Mathematical models Medical research Multi-step ahead Multiple criterion Neural networks Neural Networks, Computer Optimization Optimization techniques Pandemics Public Health Regression Robustness (mathematics) Singular value decomposition Singular value decomposition (SVD) Time series |
title | Multi-step influenza forecasting through singular value decomposition and kernel ridge regression with MARCOS-guided gradient-based optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T16%3A47%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-step%20influenza%20forecasting%20through%20singular%20value%20decomposition%20and%20kernel%20ridge%20regression%20with%20MARCOS-guided%20gradient-based%20optimization&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Hongliang,%20Guo&rft.date=2024-02&rft.volume=169&rft.spage=107888&rft.pages=107888-&rft.artnum=107888&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2023.107888&rft_dat=%3Cproquest_cross%3E2909091233%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920620136&rft_id=info:pmid/38157778&rft_els_id=S0010482523013537&rfr_iscdi=true |