Multi-step influenza forecasting through singular value decomposition and kernel ridge regression with MARCOS-guided gradient-based optimization

This research delves into the significance of influenza outbreaks in public health, particularly the importance of accurate forecasts using weekly Influenza-like illness (ILI) rates. The present work develops a novel hybrid machine-learning model by combining singular value decomposition with kernel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2024-02, Vol.169, p.107888, Article 107888
Hauptverfasser: Hongliang, Guo, Zhiyao, Zhang, Ahmadianfar, Iman, Escorcia-Gutierrez, José, Aljehane, Nojood O., Li, Chengye
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 107888
container_title Computers in biology and medicine
container_volume 169
creator Hongliang, Guo
Zhiyao, Zhang
Ahmadianfar, Iman
Escorcia-Gutierrez, José
Aljehane, Nojood O.
Li, Chengye
description This research delves into the significance of influenza outbreaks in public health, particularly the importance of accurate forecasts using weekly Influenza-like illness (ILI) rates. The present work develops a novel hybrid machine-learning model by combining singular value decomposition with kernel ridge regression (SKRR). In this context, a novel hybrid model known as H-SKRR is developed by combining two robust forecasting approaches, SKRR and ridge regression, which aims to improve multi-step-ahead predictions for weekly ILI rates in Southern and Northern China. The study begins with feature selection via XGBoost in the preprocessing phase, identifying optimal precursor information guided by importance factors. It decomposes the original signal using multivariate variational mode decomposition (MVMD) to address non-stationarity and complexity. H-SKRR is implemented by incorporating significant lagged-time components across sub-components. The aggregated forecasted values from these sub-components generate ILI values for two horizons (i.e., 4-and 7-weekly ahead). Employing the gradient-based optimization (GBO) algorithm fine-tunes model parameters. Furthermore, the deep random vector functional link (dRVFL), Ridge regression, and gated recurrent unit neural network (GRU) models were employed to validate the MVMD-H-SKRR-GBO paradigm's effectiveness. The outcomes, assessed using the MARCOS (Measurement of alternatives and ranking according to compromise solution) method as a multi-criteria decision-making method, highlight the superior accuracy of the MVMD-H-SKRR-GBO model in predicting ILI rates. The results clearly highlight the exceptional performance of the MVMD-H-SKRR-GBO model, with outstanding precision demonstrated by impressive R, RMSE, IA, and U95 % values of 0.946, 0.388, 0.970, and 1.075, respectively, at t + 7. •Developing a hybrid Kernel Ridge regression with singular value decomposition.•MARCOS method is utilized to specify the best model to forecast influenza rate.•HSKRR effectively predicts influenza transmission, forming a robust and reliable framework.•The positive aspects and limitations of the forecast framework are examined.
doi_str_mv 10.1016/j.compbiomed.2023.107888
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2909091233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482523013537</els_id><sourcerecordid>2909091233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-25c76cc7c77bb0df1663d99af3463b72e68e0dd3fe2d60980b15e2c5803dd5743</originalsourceid><addsrcrecordid>eNqFkc1u1DAQgCMEokvhFZAlLlyyjO0k9h7LCgpSq0r8nC3HnmS9JHGwnSL6FDxyHW0rJC7IB8ueb340X1EQClsKtHl33Bo_zq3zI9otA8bzt5BSPik2VIpdCTWvnhYbAAplJVl9VryI8QgAFXB4XpxxSWshhNwUf66XIbkyJpyJm7phwelOk84HNDomN_UkHYJf-gOJ-bEMOpBbnSlicR3BR5ecn4ieLPmBYcKBBGd7JAH7gDGusV8uHcj1xZf9zdeyX5xFS_qgrcMpla2O-enn5EZ3p9dSL4tnnR4ivnq4z4vvHz98238qr24uP-8vrkrDK5FKVhvRGCOMEG0LtqNNw-1upzteNbwVDBuJYC3vkNkGdhJaWiMztQRubS0qfl68PdWdg_-5YExqdNHgMOgJ_RIV20E-lHGe0Tf_oEe_hClPlykGDQPKm0zJE2WCjzFgp-bgRh1-KwpqtaaO6q81tVpTJ2s59fVDg6VdY4-Jj5oy8P4EYN7IrcOgosn7M2hdFpWU9e7_Xe4Bh3Cwzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920620136</pqid></control><display><type>article</type><title>Multi-step influenza forecasting through singular value decomposition and kernel ridge regression with MARCOS-guided gradient-based optimization</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Hongliang, Guo ; Zhiyao, Zhang ; Ahmadianfar, Iman ; Escorcia-Gutierrez, José ; Aljehane, Nojood O. ; Li, Chengye</creator><creatorcontrib>Hongliang, Guo ; Zhiyao, Zhang ; Ahmadianfar, Iman ; Escorcia-Gutierrez, José ; Aljehane, Nojood O. ; Li, Chengye</creatorcontrib><description>This research delves into the significance of influenza outbreaks in public health, particularly the importance of accurate forecasts using weekly Influenza-like illness (ILI) rates. The present work develops a novel hybrid machine-learning model by combining singular value decomposition with kernel ridge regression (SKRR). In this context, a novel hybrid model known as H-SKRR is developed by combining two robust forecasting approaches, SKRR and ridge regression, which aims to improve multi-step-ahead predictions for weekly ILI rates in Southern and Northern China. The study begins with feature selection via XGBoost in the preprocessing phase, identifying optimal precursor information guided by importance factors. It decomposes the original signal using multivariate variational mode decomposition (MVMD) to address non-stationarity and complexity. H-SKRR is implemented by incorporating significant lagged-time components across sub-components. The aggregated forecasted values from these sub-components generate ILI values for two horizons (i.e., 4-and 7-weekly ahead). Employing the gradient-based optimization (GBO) algorithm fine-tunes model parameters. Furthermore, the deep random vector functional link (dRVFL), Ridge regression, and gated recurrent unit neural network (GRU) models were employed to validate the MVMD-H-SKRR-GBO paradigm's effectiveness. The outcomes, assessed using the MARCOS (Measurement of alternatives and ranking according to compromise solution) method as a multi-criteria decision-making method, highlight the superior accuracy of the MVMD-H-SKRR-GBO model in predicting ILI rates. The results clearly highlight the exceptional performance of the MVMD-H-SKRR-GBO model, with outstanding precision demonstrated by impressive R, RMSE, IA, and U95 % values of 0.946, 0.388, 0.970, and 1.075, respectively, at t + 7. •Developing a hybrid Kernel Ridge regression with singular value decomposition.•MARCOS method is utilized to specify the best model to forecast influenza rate.•HSKRR effectively predicts influenza transmission, forming a robust and reliable framework.•The positive aspects and limitations of the forecast framework are examined.</description><identifier>ISSN: 0010-4825</identifier><identifier>ISSN: 1879-0534</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2023.107888</identifier><identifier>PMID: 38157778</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Accuracy ; Algorithms ; Coronaviruses ; COVID-19 ; Crude oil prices ; Decision making ; Decomposition ; Disease Outbreaks ; Epidemics ; Fatalities ; Feature selection ; Forecasting ; Forecasting techniques ; GBO algorithm ; Generalized linear models ; Health care ; Humans ; Influenza ; Influenza forecasting ; Influenza, Human - epidemiology ; Information systems ; Kernel ridge regression ; Machine learning ; MARCOS method ; Mathematical models ; Medical research ; Multi-step ahead ; Multiple criterion ; Neural networks ; Neural Networks, Computer ; Optimization ; Optimization techniques ; Pandemics ; Public Health ; Regression ; Robustness (mathematics) ; Singular value decomposition ; Singular value decomposition (SVD) ; Time series</subject><ispartof>Computers in biology and medicine, 2024-02, Vol.169, p.107888, Article 107888</ispartof><rights>2023 Elsevier Ltd</rights><rights>Copyright © 2023 Elsevier Ltd. All rights reserved.</rights><rights>2023. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c347t-25c76cc7c77bb0df1663d99af3463b72e68e0dd3fe2d60980b15e2c5803dd5743</cites><orcidid>0000-0003-0518-3187</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010482523013537$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38157778$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hongliang, Guo</creatorcontrib><creatorcontrib>Zhiyao, Zhang</creatorcontrib><creatorcontrib>Ahmadianfar, Iman</creatorcontrib><creatorcontrib>Escorcia-Gutierrez, José</creatorcontrib><creatorcontrib>Aljehane, Nojood O.</creatorcontrib><creatorcontrib>Li, Chengye</creatorcontrib><title>Multi-step influenza forecasting through singular value decomposition and kernel ridge regression with MARCOS-guided gradient-based optimization</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>This research delves into the significance of influenza outbreaks in public health, particularly the importance of accurate forecasts using weekly Influenza-like illness (ILI) rates. The present work develops a novel hybrid machine-learning model by combining singular value decomposition with kernel ridge regression (SKRR). In this context, a novel hybrid model known as H-SKRR is developed by combining two robust forecasting approaches, SKRR and ridge regression, which aims to improve multi-step-ahead predictions for weekly ILI rates in Southern and Northern China. The study begins with feature selection via XGBoost in the preprocessing phase, identifying optimal precursor information guided by importance factors. It decomposes the original signal using multivariate variational mode decomposition (MVMD) to address non-stationarity and complexity. H-SKRR is implemented by incorporating significant lagged-time components across sub-components. The aggregated forecasted values from these sub-components generate ILI values for two horizons (i.e., 4-and 7-weekly ahead). Employing the gradient-based optimization (GBO) algorithm fine-tunes model parameters. Furthermore, the deep random vector functional link (dRVFL), Ridge regression, and gated recurrent unit neural network (GRU) models were employed to validate the MVMD-H-SKRR-GBO paradigm's effectiveness. The outcomes, assessed using the MARCOS (Measurement of alternatives and ranking according to compromise solution) method as a multi-criteria decision-making method, highlight the superior accuracy of the MVMD-H-SKRR-GBO model in predicting ILI rates. The results clearly highlight the exceptional performance of the MVMD-H-SKRR-GBO model, with outstanding precision demonstrated by impressive R, RMSE, IA, and U95 % values of 0.946, 0.388, 0.970, and 1.075, respectively, at t + 7. •Developing a hybrid Kernel Ridge regression with singular value decomposition.•MARCOS method is utilized to specify the best model to forecast influenza rate.•HSKRR effectively predicts influenza transmission, forming a robust and reliable framework.•The positive aspects and limitations of the forecast framework are examined.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Crude oil prices</subject><subject>Decision making</subject><subject>Decomposition</subject><subject>Disease Outbreaks</subject><subject>Epidemics</subject><subject>Fatalities</subject><subject>Feature selection</subject><subject>Forecasting</subject><subject>Forecasting techniques</subject><subject>GBO algorithm</subject><subject>Generalized linear models</subject><subject>Health care</subject><subject>Humans</subject><subject>Influenza</subject><subject>Influenza forecasting</subject><subject>Influenza, Human - epidemiology</subject><subject>Information systems</subject><subject>Kernel ridge regression</subject><subject>Machine learning</subject><subject>MARCOS method</subject><subject>Mathematical models</subject><subject>Medical research</subject><subject>Multi-step ahead</subject><subject>Multiple criterion</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Pandemics</subject><subject>Public Health</subject><subject>Regression</subject><subject>Robustness (mathematics)</subject><subject>Singular value decomposition</subject><subject>Singular value decomposition (SVD)</subject><subject>Time series</subject><issn>0010-4825</issn><issn>1879-0534</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAQgCMEokvhFZAlLlyyjO0k9h7LCgpSq0r8nC3HnmS9JHGwnSL6FDxyHW0rJC7IB8ueb340X1EQClsKtHl33Bo_zq3zI9otA8bzt5BSPik2VIpdCTWvnhYbAAplJVl9VryI8QgAFXB4XpxxSWshhNwUf66XIbkyJpyJm7phwelOk84HNDomN_UkHYJf-gOJ-bEMOpBbnSlicR3BR5ecn4ieLPmBYcKBBGd7JAH7gDGusV8uHcj1xZf9zdeyX5xFS_qgrcMpla2O-enn5EZ3p9dSL4tnnR4ivnq4z4vvHz98238qr24uP-8vrkrDK5FKVhvRGCOMEG0LtqNNw-1upzteNbwVDBuJYC3vkNkGdhJaWiMztQRubS0qfl68PdWdg_-5YExqdNHgMOgJ_RIV20E-lHGe0Tf_oEe_hClPlykGDQPKm0zJE2WCjzFgp-bgRh1-KwpqtaaO6q81tVpTJ2s59fVDg6VdY4-Jj5oy8P4EYN7IrcOgosn7M2hdFpWU9e7_Xe4Bh3Cwzg</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Hongliang, Guo</creator><creator>Zhiyao, Zhang</creator><creator>Ahmadianfar, Iman</creator><creator>Escorcia-Gutierrez, José</creator><creator>Aljehane, Nojood O.</creator><creator>Li, Chengye</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0518-3187</orcidid></search><sort><creationdate>202402</creationdate><title>Multi-step influenza forecasting through singular value decomposition and kernel ridge regression with MARCOS-guided gradient-based optimization</title><author>Hongliang, Guo ; Zhiyao, Zhang ; Ahmadianfar, Iman ; Escorcia-Gutierrez, José ; Aljehane, Nojood O. ; Li, Chengye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-25c76cc7c77bb0df1663d99af3463b72e68e0dd3fe2d60980b15e2c5803dd5743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Crude oil prices</topic><topic>Decision making</topic><topic>Decomposition</topic><topic>Disease Outbreaks</topic><topic>Epidemics</topic><topic>Fatalities</topic><topic>Feature selection</topic><topic>Forecasting</topic><topic>Forecasting techniques</topic><topic>GBO algorithm</topic><topic>Generalized linear models</topic><topic>Health care</topic><topic>Humans</topic><topic>Influenza</topic><topic>Influenza forecasting</topic><topic>Influenza, Human - epidemiology</topic><topic>Information systems</topic><topic>Kernel ridge regression</topic><topic>Machine learning</topic><topic>MARCOS method</topic><topic>Mathematical models</topic><topic>Medical research</topic><topic>Multi-step ahead</topic><topic>Multiple criterion</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Pandemics</topic><topic>Public Health</topic><topic>Regression</topic><topic>Robustness (mathematics)</topic><topic>Singular value decomposition</topic><topic>Singular value decomposition (SVD)</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hongliang, Guo</creatorcontrib><creatorcontrib>Zhiyao, Zhang</creatorcontrib><creatorcontrib>Ahmadianfar, Iman</creatorcontrib><creatorcontrib>Escorcia-Gutierrez, José</creatorcontrib><creatorcontrib>Aljehane, Nojood O.</creatorcontrib><creatorcontrib>Li, Chengye</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hongliang, Guo</au><au>Zhiyao, Zhang</au><au>Ahmadianfar, Iman</au><au>Escorcia-Gutierrez, José</au><au>Aljehane, Nojood O.</au><au>Li, Chengye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-step influenza forecasting through singular value decomposition and kernel ridge regression with MARCOS-guided gradient-based optimization</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2024-02</date><risdate>2024</risdate><volume>169</volume><spage>107888</spage><pages>107888-</pages><artnum>107888</artnum><issn>0010-4825</issn><issn>1879-0534</issn><eissn>1879-0534</eissn><abstract>This research delves into the significance of influenza outbreaks in public health, particularly the importance of accurate forecasts using weekly Influenza-like illness (ILI) rates. The present work develops a novel hybrid machine-learning model by combining singular value decomposition with kernel ridge regression (SKRR). In this context, a novel hybrid model known as H-SKRR is developed by combining two robust forecasting approaches, SKRR and ridge regression, which aims to improve multi-step-ahead predictions for weekly ILI rates in Southern and Northern China. The study begins with feature selection via XGBoost in the preprocessing phase, identifying optimal precursor information guided by importance factors. It decomposes the original signal using multivariate variational mode decomposition (MVMD) to address non-stationarity and complexity. H-SKRR is implemented by incorporating significant lagged-time components across sub-components. The aggregated forecasted values from these sub-components generate ILI values for two horizons (i.e., 4-and 7-weekly ahead). Employing the gradient-based optimization (GBO) algorithm fine-tunes model parameters. Furthermore, the deep random vector functional link (dRVFL), Ridge regression, and gated recurrent unit neural network (GRU) models were employed to validate the MVMD-H-SKRR-GBO paradigm's effectiveness. The outcomes, assessed using the MARCOS (Measurement of alternatives and ranking according to compromise solution) method as a multi-criteria decision-making method, highlight the superior accuracy of the MVMD-H-SKRR-GBO model in predicting ILI rates. The results clearly highlight the exceptional performance of the MVMD-H-SKRR-GBO model, with outstanding precision demonstrated by impressive R, RMSE, IA, and U95 % values of 0.946, 0.388, 0.970, and 1.075, respectively, at t + 7. •Developing a hybrid Kernel Ridge regression with singular value decomposition.•MARCOS method is utilized to specify the best model to forecast influenza rate.•HSKRR effectively predicts influenza transmission, forming a robust and reliable framework.•The positive aspects and limitations of the forecast framework are examined.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>38157778</pmid><doi>10.1016/j.compbiomed.2023.107888</doi><orcidid>https://orcid.org/0000-0003-0518-3187</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2024-02, Vol.169, p.107888, Article 107888
issn 0010-4825
1879-0534
1879-0534
language eng
recordid cdi_proquest_miscellaneous_2909091233
source MEDLINE; Elsevier ScienceDirect Journals
subjects Accuracy
Algorithms
Coronaviruses
COVID-19
Crude oil prices
Decision making
Decomposition
Disease Outbreaks
Epidemics
Fatalities
Feature selection
Forecasting
Forecasting techniques
GBO algorithm
Generalized linear models
Health care
Humans
Influenza
Influenza forecasting
Influenza, Human - epidemiology
Information systems
Kernel ridge regression
Machine learning
MARCOS method
Mathematical models
Medical research
Multi-step ahead
Multiple criterion
Neural networks
Neural Networks, Computer
Optimization
Optimization techniques
Pandemics
Public Health
Regression
Robustness (mathematics)
Singular value decomposition
Singular value decomposition (SVD)
Time series
title Multi-step influenza forecasting through singular value decomposition and kernel ridge regression with MARCOS-guided gradient-based optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T16%3A47%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-step%20influenza%20forecasting%20through%20singular%20value%20decomposition%20and%20kernel%20ridge%20regression%20with%20MARCOS-guided%20gradient-based%20optimization&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Hongliang,%20Guo&rft.date=2024-02&rft.volume=169&rft.spage=107888&rft.pages=107888-&rft.artnum=107888&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2023.107888&rft_dat=%3Cproquest_cross%3E2909091233%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920620136&rft_id=info:pmid/38157778&rft_els_id=S0010482523013537&rfr_iscdi=true