Autotrophic denitrification based on sulfur-iron minerals: advanced wastewater treatment technology with simultaneous nitrogen and phosphorus removal
Autotrophic denitrification technology has many advantages, including no external carbon source addition, low sludge production, high operating cost efficiency, prevention of secondary sewage pollution, and stable treatment efficiency. At present, the main research on autotrophic denitrification ele...
Gespeichert in:
Veröffentlicht in: | Environmental science and pollution research international 2024-01, Vol.31 (5), p.6766-6781 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6781 |
---|---|
container_issue | 5 |
container_start_page | 6766 |
container_title | Environmental science and pollution research international |
container_volume | 31 |
creator | Yuan, Quan Gao, Jingqing Liu, Panpan Huang, Zhenzhen Li, Luyang |
description | Autotrophic denitrification technology has many advantages, including no external carbon source addition, low sludge production, high operating cost efficiency, prevention of secondary sewage pollution, and stable treatment efficiency. At present, the main research on autotrophic denitrification electron donors mainly includes sulfur, iron, and hydrogen. In these autotrophic denitrification systems, pyrite has received attention due to its advantages of easy availability of raw materials, low cost, and pH stability. When pyrite is used as a substrate for autotropic denitrification, sulfide (S
2−
) and ferrous ion (Fe
2+
) in the substrate will provide electrons to convert nitrate (NO
3
−
) in sewage first to nitrite (NO
2
−
), then to nitrogen (N
2
), and finally to discharge the system. At the same time, sulfide (S
2−
) loses electrons to sulfate (SO
4
2−
) and ferrous ion (Fe
2+
) loses electrons to ferric iron (Fe
3+
). Phosphates (PO
4
3−
) in wastewater are chemically combined with ferric iron (Fe
3+
) to form ferric phosphate (FePO
4
) precipitate. This paper aims to provide a detailed and comprehensive overview of the dynamic changes of nitrogen (N), phosphorus (P), and other substances in the process of sulfur autotrophic denitrification using iron sulfide, and to summarize the factors that affect wastewater treatment in the system. This work will provide a relevant research direction and theoretical basis for the field of sulfur autotrophic denitrification, especially for the related experiments of the reaction conversion of various substances in the system. |
doi_str_mv | 10.1007/s11356-023-31467-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2909087579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918834799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-c8ace0812d32e2562b8c49d2e5507ee7c7248e1c98bc490844ca9d1be5203cb23</originalsourceid><addsrcrecordid>eNqFkc9OHSEUxklTU632BVwYkm7cTMuf4QLujFHbxKQbXROGOfdezAxcgfHGB-n7luvY1nRhF-ScHH7n-yAfQseUfKGEyK-ZUi4WDWG84bRdyEa9Qwd0QdtGtlq_f9Xvo4853xPCiGbyA9rnigpNlThAP8-nEkuKm7V3uIfgS_JL72zxMeDOZuhxbfI0LKfU-FT70QdIdshn2PaPNrhKbG0usLUFEi4JbBkhFFzArUMc4uoJb31Z4-zHaSg2QJwy3vnEFQRsQ48365jrSXWeYIyPdjhCe8tqAZ9e6iG6u7q8vfjW3Py4_n5xftM4LnRpnLIOiKKs5wyYWLBOuVb3DIQgEkA6yVoF1GnV1TlRbeus7mkHghHuOsYP0emsu0nxYYJczOizg2GYn2k4FVwoLWv5H8o0qQ5SSF3Rz_-g93FKoX6kUlQp3kq9o9hMuRRzTrA0m-RHm54MJWaXr5nzNTVf85yvUXXp5EV66kbo_6z8DrQCfAZyvQorSH-935D9BTsHtIY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918834799</pqid></control><display><type>article</type><title>Autotrophic denitrification based on sulfur-iron minerals: advanced wastewater treatment technology with simultaneous nitrogen and phosphorus removal</title><source>Springer Online Journals Complete</source><creator>Yuan, Quan ; Gao, Jingqing ; Liu, Panpan ; Huang, Zhenzhen ; Li, Luyang</creator><creatorcontrib>Yuan, Quan ; Gao, Jingqing ; Liu, Panpan ; Huang, Zhenzhen ; Li, Luyang</creatorcontrib><description>Autotrophic denitrification technology has many advantages, including no external carbon source addition, low sludge production, high operating cost efficiency, prevention of secondary sewage pollution, and stable treatment efficiency. At present, the main research on autotrophic denitrification electron donors mainly includes sulfur, iron, and hydrogen. In these autotrophic denitrification systems, pyrite has received attention due to its advantages of easy availability of raw materials, low cost, and pH stability. When pyrite is used as a substrate for autotropic denitrification, sulfide (S
2−
) and ferrous ion (Fe
2+
) in the substrate will provide electrons to convert nitrate (NO
3
−
) in sewage first to nitrite (NO
2
−
), then to nitrogen (N
2
), and finally to discharge the system. At the same time, sulfide (S
2−
) loses electrons to sulfate (SO
4
2−
) and ferrous ion (Fe
2+
) loses electrons to ferric iron (Fe
3+
). Phosphates (PO
4
3−
) in wastewater are chemically combined with ferric iron (Fe
3+
) to form ferric phosphate (FePO
4
) precipitate. This paper aims to provide a detailed and comprehensive overview of the dynamic changes of nitrogen (N), phosphorus (P), and other substances in the process of sulfur autotrophic denitrification using iron sulfide, and to summarize the factors that affect wastewater treatment in the system. This work will provide a relevant research direction and theoretical basis for the field of sulfur autotrophic denitrification, especially for the related experiments of the reaction conversion of various substances in the system.</description><identifier>ISSN: 1614-7499</identifier><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-023-31467-8</identifier><identifier>PMID: 38159185</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Advanced wastewater treatment ; Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; carbon ; Carbon sources ; cost effectiveness ; Denitrification ; Earth and Environmental Science ; Ecotoxicology ; Electrons ; Environment ; Environmental Chemistry ; Environmental Health ; Ferric ions ; ferric phosphate ; Ferrous ions ; hydrogen ; Iron ; Iron phosphates ; Iron sulfides ; Nitrates ; nitrites ; Nitrogen ; Nitrogen dioxide ; Operating costs ; pH stability ; Phosphates ; Phosphorus ; Phosphorus removal ; pollution ; Pollution abatement ; Pollution prevention ; Pyrite ; Raw materials ; Review Article ; Sewage ; Sludge ; Substrates ; sulfates ; Sulfur ; Waste Water Technology ; wastewater ; Wastewater treatment ; Water Management ; Water Pollution Control ; Water treatment</subject><ispartof>Environmental science and pollution research international, 2024-01, Vol.31 (5), p.6766-6781</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-c8ace0812d32e2562b8c49d2e5507ee7c7248e1c98bc490844ca9d1be5203cb23</cites><orcidid>0000-0002-8686-7419</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11356-023-31467-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11356-023-31467-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38159185$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yuan, Quan</creatorcontrib><creatorcontrib>Gao, Jingqing</creatorcontrib><creatorcontrib>Liu, Panpan</creatorcontrib><creatorcontrib>Huang, Zhenzhen</creatorcontrib><creatorcontrib>Li, Luyang</creatorcontrib><title>Autotrophic denitrification based on sulfur-iron minerals: advanced wastewater treatment technology with simultaneous nitrogen and phosphorus removal</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><addtitle>Environ Sci Pollut Res Int</addtitle><description>Autotrophic denitrification technology has many advantages, including no external carbon source addition, low sludge production, high operating cost efficiency, prevention of secondary sewage pollution, and stable treatment efficiency. At present, the main research on autotrophic denitrification electron donors mainly includes sulfur, iron, and hydrogen. In these autotrophic denitrification systems, pyrite has received attention due to its advantages of easy availability of raw materials, low cost, and pH stability. When pyrite is used as a substrate for autotropic denitrification, sulfide (S
2−
) and ferrous ion (Fe
2+
) in the substrate will provide electrons to convert nitrate (NO
3
−
) in sewage first to nitrite (NO
2
−
), then to nitrogen (N
2
), and finally to discharge the system. At the same time, sulfide (S
2−
) loses electrons to sulfate (SO
4
2−
) and ferrous ion (Fe
2+
) loses electrons to ferric iron (Fe
3+
). Phosphates (PO
4
3−
) in wastewater are chemically combined with ferric iron (Fe
3+
) to form ferric phosphate (FePO
4
) precipitate. This paper aims to provide a detailed and comprehensive overview of the dynamic changes of nitrogen (N), phosphorus (P), and other substances in the process of sulfur autotrophic denitrification using iron sulfide, and to summarize the factors that affect wastewater treatment in the system. This work will provide a relevant research direction and theoretical basis for the field of sulfur autotrophic denitrification, especially for the related experiments of the reaction conversion of various substances in the system.</description><subject>Advanced wastewater treatment</subject><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>carbon</subject><subject>Carbon sources</subject><subject>cost effectiveness</subject><subject>Denitrification</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Electrons</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Ferric ions</subject><subject>ferric phosphate</subject><subject>Ferrous ions</subject><subject>hydrogen</subject><subject>Iron</subject><subject>Iron phosphates</subject><subject>Iron sulfides</subject><subject>Nitrates</subject><subject>nitrites</subject><subject>Nitrogen</subject><subject>Nitrogen dioxide</subject><subject>Operating costs</subject><subject>pH stability</subject><subject>Phosphates</subject><subject>Phosphorus</subject><subject>Phosphorus removal</subject><subject>pollution</subject><subject>Pollution abatement</subject><subject>Pollution prevention</subject><subject>Pyrite</subject><subject>Raw materials</subject><subject>Review Article</subject><subject>Sewage</subject><subject>Sludge</subject><subject>Substrates</subject><subject>sulfates</subject><subject>Sulfur</subject><subject>Waste Water Technology</subject><subject>wastewater</subject><subject>Wastewater treatment</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><subject>Water treatment</subject><issn>1614-7499</issn><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkc9OHSEUxklTU632BVwYkm7cTMuf4QLujFHbxKQbXROGOfdezAxcgfHGB-n7luvY1nRhF-ScHH7n-yAfQseUfKGEyK-ZUi4WDWG84bRdyEa9Qwd0QdtGtlq_f9Xvo4853xPCiGbyA9rnigpNlThAP8-nEkuKm7V3uIfgS_JL72zxMeDOZuhxbfI0LKfU-FT70QdIdshn2PaPNrhKbG0usLUFEi4JbBkhFFzArUMc4uoJb31Z4-zHaSg2QJwy3vnEFQRsQ48365jrSXWeYIyPdjhCe8tqAZ9e6iG6u7q8vfjW3Py4_n5xftM4LnRpnLIOiKKs5wyYWLBOuVb3DIQgEkA6yVoF1GnV1TlRbeus7mkHghHuOsYP0emsu0nxYYJczOizg2GYn2k4FVwoLWv5H8o0qQ5SSF3Rz_-g93FKoX6kUlQp3kq9o9hMuRRzTrA0m-RHm54MJWaXr5nzNTVf85yvUXXp5EV66kbo_6z8DrQCfAZyvQorSH-935D9BTsHtIY</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Yuan, Quan</creator><creator>Gao, Jingqing</creator><creator>Liu, Panpan</creator><creator>Huang, Zhenzhen</creator><creator>Li, Luyang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-8686-7419</orcidid></search><sort><creationdate>20240101</creationdate><title>Autotrophic denitrification based on sulfur-iron minerals: advanced wastewater treatment technology with simultaneous nitrogen and phosphorus removal</title><author>Yuan, Quan ; Gao, Jingqing ; Liu, Panpan ; Huang, Zhenzhen ; Li, Luyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-c8ace0812d32e2562b8c49d2e5507ee7c7248e1c98bc490844ca9d1be5203cb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Advanced wastewater treatment</topic><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>carbon</topic><topic>Carbon sources</topic><topic>cost effectiveness</topic><topic>Denitrification</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Electrons</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Ferric ions</topic><topic>ferric phosphate</topic><topic>Ferrous ions</topic><topic>hydrogen</topic><topic>Iron</topic><topic>Iron phosphates</topic><topic>Iron sulfides</topic><topic>Nitrates</topic><topic>nitrites</topic><topic>Nitrogen</topic><topic>Nitrogen dioxide</topic><topic>Operating costs</topic><topic>pH stability</topic><topic>Phosphates</topic><topic>Phosphorus</topic><topic>Phosphorus removal</topic><topic>pollution</topic><topic>Pollution abatement</topic><topic>Pollution prevention</topic><topic>Pyrite</topic><topic>Raw materials</topic><topic>Review Article</topic><topic>Sewage</topic><topic>Sludge</topic><topic>Substrates</topic><topic>sulfates</topic><topic>Sulfur</topic><topic>Waste Water Technology</topic><topic>wastewater</topic><topic>Wastewater treatment</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Quan</creatorcontrib><creatorcontrib>Gao, Jingqing</creatorcontrib><creatorcontrib>Liu, Panpan</creatorcontrib><creatorcontrib>Huang, Zhenzhen</creatorcontrib><creatorcontrib>Li, Luyang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Quan</au><au>Gao, Jingqing</au><au>Liu, Panpan</au><au>Huang, Zhenzhen</au><au>Li, Luyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autotrophic denitrification based on sulfur-iron minerals: advanced wastewater treatment technology with simultaneous nitrogen and phosphorus removal</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><addtitle>Environ Sci Pollut Res Int</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>31</volume><issue>5</issue><spage>6766</spage><epage>6781</epage><pages>6766-6781</pages><issn>1614-7499</issn><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>Autotrophic denitrification technology has many advantages, including no external carbon source addition, low sludge production, high operating cost efficiency, prevention of secondary sewage pollution, and stable treatment efficiency. At present, the main research on autotrophic denitrification electron donors mainly includes sulfur, iron, and hydrogen. In these autotrophic denitrification systems, pyrite has received attention due to its advantages of easy availability of raw materials, low cost, and pH stability. When pyrite is used as a substrate for autotropic denitrification, sulfide (S
2−
) and ferrous ion (Fe
2+
) in the substrate will provide electrons to convert nitrate (NO
3
−
) in sewage first to nitrite (NO
2
−
), then to nitrogen (N
2
), and finally to discharge the system. At the same time, sulfide (S
2−
) loses electrons to sulfate (SO
4
2−
) and ferrous ion (Fe
2+
) loses electrons to ferric iron (Fe
3+
). Phosphates (PO
4
3−
) in wastewater are chemically combined with ferric iron (Fe
3+
) to form ferric phosphate (FePO
4
) precipitate. This paper aims to provide a detailed and comprehensive overview of the dynamic changes of nitrogen (N), phosphorus (P), and other substances in the process of sulfur autotrophic denitrification using iron sulfide, and to summarize the factors that affect wastewater treatment in the system. This work will provide a relevant research direction and theoretical basis for the field of sulfur autotrophic denitrification, especially for the related experiments of the reaction conversion of various substances in the system.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38159185</pmid><doi>10.1007/s11356-023-31467-8</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8686-7419</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-7499 |
ispartof | Environmental science and pollution research international, 2024-01, Vol.31 (5), p.6766-6781 |
issn | 1614-7499 0944-1344 1614-7499 |
language | eng |
recordid | cdi_proquest_miscellaneous_2909087579 |
source | Springer Online Journals Complete |
subjects | Advanced wastewater treatment Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution carbon Carbon sources cost effectiveness Denitrification Earth and Environmental Science Ecotoxicology Electrons Environment Environmental Chemistry Environmental Health Ferric ions ferric phosphate Ferrous ions hydrogen Iron Iron phosphates Iron sulfides Nitrates nitrites Nitrogen Nitrogen dioxide Operating costs pH stability Phosphates Phosphorus Phosphorus removal pollution Pollution abatement Pollution prevention Pyrite Raw materials Review Article Sewage Sludge Substrates sulfates Sulfur Waste Water Technology wastewater Wastewater treatment Water Management Water Pollution Control Water treatment |
title | Autotrophic denitrification based on sulfur-iron minerals: advanced wastewater treatment technology with simultaneous nitrogen and phosphorus removal |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T21%3A29%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autotrophic%20denitrification%20based%20on%20sulfur-iron%20minerals:%20advanced%20wastewater%20treatment%20technology%20with%20simultaneous%20nitrogen%20and%20phosphorus%20removal&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Yuan,%20Quan&rft.date=2024-01-01&rft.volume=31&rft.issue=5&rft.spage=6766&rft.epage=6781&rft.pages=6766-6781&rft.issn=1614-7499&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-023-31467-8&rft_dat=%3Cproquest_cross%3E2918834799%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918834799&rft_id=info:pmid/38159185&rfr_iscdi=true |