Impact of pretreatment with dielectric barrier discharge plasma on the drying characteristics and bioactive compounds of jackfruit slices

BACKGROUND Hot‐air drying is a popular method for preserving the production of jackfruit, but heat treatment damages its nutritional qualities. Cold plasma is one of the pretreatment methods used to preserve quality attributes of fruits before drying. In the present work, we studied the effect of di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the science of food and agriculture 2024-04, Vol.104 (6), p.3654-3664
Hauptverfasser: Seelarat, Weerasak, Sangwanna, Sujarinee, Chaiwon, Tawan, Panklai, Teerapap, Chaosuan, Natthaphon, Bootchanont, Atipong, Wattanawikkam, Chakkaphan, Porjai, Porramain, Khuangsatung, Wongvisarut, Boonyawan, Dheerawan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3664
container_issue 6
container_start_page 3654
container_title Journal of the science of food and agriculture
container_volume 104
creator Seelarat, Weerasak
Sangwanna, Sujarinee
Chaiwon, Tawan
Panklai, Teerapap
Chaosuan, Natthaphon
Bootchanont, Atipong
Wattanawikkam, Chakkaphan
Porjai, Porramain
Khuangsatung, Wongvisarut
Boonyawan, Dheerawan
description BACKGROUND Hot‐air drying is a popular method for preserving the production of jackfruit, but heat treatment damages its nutritional qualities. Cold plasma is one of the pretreatment methods used to preserve quality attributes of fruits before drying. In the present work, we studied the effect of dielectric barrier discharge (DBD) plasma on the drying characteristics, microstructure, and bioactive compounds of jackfruit slices with different pretreatment times (15, 30, 45, and 60 s), followed by hot‐air drying at 50, 60, and 70 °C. A homemade DBD device was operated via three neon transformers. RESULTS Optical emission spectrophotometry revealed the emitted spectra of the reactive species in DBD plasma, including the N2 second positive system, N2 first negative system, nitrogen ion, and hydroxyl radical. The results showed that the DBD plasma promoted moisture transfer and enhanced the drying rate, related to the changes in the surface microstructure of samples damaged by DBD plasma. The modified Overhults model was recommended for describing the drying characteristics of jackfruit slices. The contents of ascorbic acid, total phenolics, total flavonoids, total polysaccharides, and antioxidant activity in pretreated jackfruit slices were improved by 9.64%, 42.59%, 25.77%, 27.00%, and 23.13%, respectively. However, the levels of color and carotenoids were reduced. CONCLUSION Thus, the bioactive compounds in dried jackfruit slices can be improved using the DBD plasma technique as a potential pretreatment method for the drying process. © 2023 Society of Chemical Industry.
doi_str_mv 10.1002/jsfa.13250
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2909087490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2909087490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4110-5abe6c77bfa8a894aa0686aab31c448819c158b59cb82ffd1510b8db4feda85d3</originalsourceid><addsrcrecordid>eNp9kc9uFDEMhyMEokvhwgOgSFwQ0hRn_ibHqqKlqBIH4DxyEk83y8xkSDKt9hH61mTZwoEDJ0v2p8-2foy9FnAmAMoPuzjgmajKBp6wjQDVFQACnrJNHpZFI-ryhL2IcQcASrXtc3ZSSdHIroINe7ieFjSJ-4EvgVIgTBPNid-7tOXW0UgmBWe4xhAchdyKZovhlvgyYpyQ-5mnLXEb9m6-5YdZ1lFwMTkTOc6Wa-dzy90RN35a_DrbeFi3Q_NjCKtLPI7OUHzJng04Rnr1WE_Z98uP3y4-FTdfrq4vzm8KUwsBRYOaWtN1ekCJUtWI0MoWUVfC1LWUQpn8m26U0bIcBisaAVpaXQ9kUTa2OmXvjt4l-J8rxdRP-ScaR5zJr7EvFSiQXa0go2__QXd-DXO-rq-EKCvV1aLO1PsjZYKPMdDQL8FNGPa9gP4QUH8IqP8dUIbfPCpXPZH9i_5JJAPiCNy7kfb_UfWfv16eH6W_ADMQnhE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112397414</pqid></control><display><type>article</type><title>Impact of pretreatment with dielectric barrier discharge plasma on the drying characteristics and bioactive compounds of jackfruit slices</title><source>Wiley Online Library All Journals</source><creator>Seelarat, Weerasak ; Sangwanna, Sujarinee ; Chaiwon, Tawan ; Panklai, Teerapap ; Chaosuan, Natthaphon ; Bootchanont, Atipong ; Wattanawikkam, Chakkaphan ; Porjai, Porramain ; Khuangsatung, Wongvisarut ; Boonyawan, Dheerawan</creator><creatorcontrib>Seelarat, Weerasak ; Sangwanna, Sujarinee ; Chaiwon, Tawan ; Panklai, Teerapap ; Chaosuan, Natthaphon ; Bootchanont, Atipong ; Wattanawikkam, Chakkaphan ; Porjai, Porramain ; Khuangsatung, Wongvisarut ; Boonyawan, Dheerawan</creatorcontrib><description>BACKGROUND Hot‐air drying is a popular method for preserving the production of jackfruit, but heat treatment damages its nutritional qualities. Cold plasma is one of the pretreatment methods used to preserve quality attributes of fruits before drying. In the present work, we studied the effect of dielectric barrier discharge (DBD) plasma on the drying characteristics, microstructure, and bioactive compounds of jackfruit slices with different pretreatment times (15, 30, 45, and 60 s), followed by hot‐air drying at 50, 60, and 70 °C. A homemade DBD device was operated via three neon transformers. RESULTS Optical emission spectrophotometry revealed the emitted spectra of the reactive species in DBD plasma, including the N2 second positive system, N2 first negative system, nitrogen ion, and hydroxyl radical. The results showed that the DBD plasma promoted moisture transfer and enhanced the drying rate, related to the changes in the surface microstructure of samples damaged by DBD plasma. The modified Overhults model was recommended for describing the drying characteristics of jackfruit slices. The contents of ascorbic acid, total phenolics, total flavonoids, total polysaccharides, and antioxidant activity in pretreated jackfruit slices were improved by 9.64%, 42.59%, 25.77%, 27.00%, and 23.13%, respectively. However, the levels of color and carotenoids were reduced. CONCLUSION Thus, the bioactive compounds in dried jackfruit slices can be improved using the DBD plasma technique as a potential pretreatment method for the drying process. © 2023 Society of Chemical Industry.</description><identifier>ISSN: 0022-5142</identifier><identifier>EISSN: 1097-0010</identifier><identifier>DOI: 10.1002/jsfa.13250</identifier><identifier>PMID: 38158730</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Air drying ; antioxidant activity ; Artocarpus heterophyllus ; Ascorbic acid ; Bioactive compounds ; Biological activity ; Carotenoids ; Cold plasmas ; Dielectric barrier discharge ; dielectric barrier discharge plasma ; dried jackfruit slices ; Drying ; Emission spectra ; Flavonoids ; Heat treatment ; Heat treatments ; Hydroxyl radicals ; Jackfruit ; Microstructure ; Neon ; Nitrogen ions ; Nitrogen plasma ; Phenols ; Plasma ; Polysaccharides ; Pretreatment ; Quality management ; Saccharides ; Spectral emittance ; Spectrophotometry ; Total phenolic contents</subject><ispartof>Journal of the science of food and agriculture, 2024-04, Vol.104 (6), p.3654-3664</ispartof><rights>2023 Society of Chemical Industry.</rights><rights>Copyright © 2024 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4110-5abe6c77bfa8a894aa0686aab31c448819c158b59cb82ffd1510b8db4feda85d3</citedby><cites>FETCH-LOGICAL-c4110-5abe6c77bfa8a894aa0686aab31c448819c158b59cb82ffd1510b8db4feda85d3</cites><orcidid>0000-0002-3254-9466</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjsfa.13250$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjsfa.13250$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38158730$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Seelarat, Weerasak</creatorcontrib><creatorcontrib>Sangwanna, Sujarinee</creatorcontrib><creatorcontrib>Chaiwon, Tawan</creatorcontrib><creatorcontrib>Panklai, Teerapap</creatorcontrib><creatorcontrib>Chaosuan, Natthaphon</creatorcontrib><creatorcontrib>Bootchanont, Atipong</creatorcontrib><creatorcontrib>Wattanawikkam, Chakkaphan</creatorcontrib><creatorcontrib>Porjai, Porramain</creatorcontrib><creatorcontrib>Khuangsatung, Wongvisarut</creatorcontrib><creatorcontrib>Boonyawan, Dheerawan</creatorcontrib><title>Impact of pretreatment with dielectric barrier discharge plasma on the drying characteristics and bioactive compounds of jackfruit slices</title><title>Journal of the science of food and agriculture</title><addtitle>J Sci Food Agric</addtitle><description>BACKGROUND Hot‐air drying is a popular method for preserving the production of jackfruit, but heat treatment damages its nutritional qualities. Cold plasma is one of the pretreatment methods used to preserve quality attributes of fruits before drying. In the present work, we studied the effect of dielectric barrier discharge (DBD) plasma on the drying characteristics, microstructure, and bioactive compounds of jackfruit slices with different pretreatment times (15, 30, 45, and 60 s), followed by hot‐air drying at 50, 60, and 70 °C. A homemade DBD device was operated via three neon transformers. RESULTS Optical emission spectrophotometry revealed the emitted spectra of the reactive species in DBD plasma, including the N2 second positive system, N2 first negative system, nitrogen ion, and hydroxyl radical. The results showed that the DBD plasma promoted moisture transfer and enhanced the drying rate, related to the changes in the surface microstructure of samples damaged by DBD plasma. The modified Overhults model was recommended for describing the drying characteristics of jackfruit slices. The contents of ascorbic acid, total phenolics, total flavonoids, total polysaccharides, and antioxidant activity in pretreated jackfruit slices were improved by 9.64%, 42.59%, 25.77%, 27.00%, and 23.13%, respectively. However, the levels of color and carotenoids were reduced. CONCLUSION Thus, the bioactive compounds in dried jackfruit slices can be improved using the DBD plasma technique as a potential pretreatment method for the drying process. © 2023 Society of Chemical Industry.</description><subject>Air drying</subject><subject>antioxidant activity</subject><subject>Artocarpus heterophyllus</subject><subject>Ascorbic acid</subject><subject>Bioactive compounds</subject><subject>Biological activity</subject><subject>Carotenoids</subject><subject>Cold plasmas</subject><subject>Dielectric barrier discharge</subject><subject>dielectric barrier discharge plasma</subject><subject>dried jackfruit slices</subject><subject>Drying</subject><subject>Emission spectra</subject><subject>Flavonoids</subject><subject>Heat treatment</subject><subject>Heat treatments</subject><subject>Hydroxyl radicals</subject><subject>Jackfruit</subject><subject>Microstructure</subject><subject>Neon</subject><subject>Nitrogen ions</subject><subject>Nitrogen plasma</subject><subject>Phenols</subject><subject>Plasma</subject><subject>Polysaccharides</subject><subject>Pretreatment</subject><subject>Quality management</subject><subject>Saccharides</subject><subject>Spectral emittance</subject><subject>Spectrophotometry</subject><subject>Total phenolic contents</subject><issn>0022-5142</issn><issn>1097-0010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kc9uFDEMhyMEokvhwgOgSFwQ0hRn_ibHqqKlqBIH4DxyEk83y8xkSDKt9hH61mTZwoEDJ0v2p8-2foy9FnAmAMoPuzjgmajKBp6wjQDVFQACnrJNHpZFI-ryhL2IcQcASrXtc3ZSSdHIroINe7ieFjSJ-4EvgVIgTBPNid-7tOXW0UgmBWe4xhAchdyKZovhlvgyYpyQ-5mnLXEb9m6-5YdZ1lFwMTkTOc6Wa-dzy90RN35a_DrbeFi3Q_NjCKtLPI7OUHzJng04Rnr1WE_Z98uP3y4-FTdfrq4vzm8KUwsBRYOaWtN1ekCJUtWI0MoWUVfC1LWUQpn8m26U0bIcBisaAVpaXQ9kUTa2OmXvjt4l-J8rxdRP-ScaR5zJr7EvFSiQXa0go2__QXd-DXO-rq-EKCvV1aLO1PsjZYKPMdDQL8FNGPa9gP4QUH8IqP8dUIbfPCpXPZH9i_5JJAPiCNy7kfb_UfWfv16eH6W_ADMQnhE</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Seelarat, Weerasak</creator><creator>Sangwanna, Sujarinee</creator><creator>Chaiwon, Tawan</creator><creator>Panklai, Teerapap</creator><creator>Chaosuan, Natthaphon</creator><creator>Bootchanont, Atipong</creator><creator>Wattanawikkam, Chakkaphan</creator><creator>Porjai, Porramain</creator><creator>Khuangsatung, Wongvisarut</creator><creator>Boonyawan, Dheerawan</creator><general>John Wiley &amp; Sons, Ltd</general><general>John Wiley and Sons, Limited</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3254-9466</orcidid></search><sort><creationdate>202404</creationdate><title>Impact of pretreatment with dielectric barrier discharge plasma on the drying characteristics and bioactive compounds of jackfruit slices</title><author>Seelarat, Weerasak ; Sangwanna, Sujarinee ; Chaiwon, Tawan ; Panklai, Teerapap ; Chaosuan, Natthaphon ; Bootchanont, Atipong ; Wattanawikkam, Chakkaphan ; Porjai, Porramain ; Khuangsatung, Wongvisarut ; Boonyawan, Dheerawan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4110-5abe6c77bfa8a894aa0686aab31c448819c158b59cb82ffd1510b8db4feda85d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Air drying</topic><topic>antioxidant activity</topic><topic>Artocarpus heterophyllus</topic><topic>Ascorbic acid</topic><topic>Bioactive compounds</topic><topic>Biological activity</topic><topic>Carotenoids</topic><topic>Cold plasmas</topic><topic>Dielectric barrier discharge</topic><topic>dielectric barrier discharge plasma</topic><topic>dried jackfruit slices</topic><topic>Drying</topic><topic>Emission spectra</topic><topic>Flavonoids</topic><topic>Heat treatment</topic><topic>Heat treatments</topic><topic>Hydroxyl radicals</topic><topic>Jackfruit</topic><topic>Microstructure</topic><topic>Neon</topic><topic>Nitrogen ions</topic><topic>Nitrogen plasma</topic><topic>Phenols</topic><topic>Plasma</topic><topic>Polysaccharides</topic><topic>Pretreatment</topic><topic>Quality management</topic><topic>Saccharides</topic><topic>Spectral emittance</topic><topic>Spectrophotometry</topic><topic>Total phenolic contents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seelarat, Weerasak</creatorcontrib><creatorcontrib>Sangwanna, Sujarinee</creatorcontrib><creatorcontrib>Chaiwon, Tawan</creatorcontrib><creatorcontrib>Panklai, Teerapap</creatorcontrib><creatorcontrib>Chaosuan, Natthaphon</creatorcontrib><creatorcontrib>Bootchanont, Atipong</creatorcontrib><creatorcontrib>Wattanawikkam, Chakkaphan</creatorcontrib><creatorcontrib>Porjai, Porramain</creatorcontrib><creatorcontrib>Khuangsatung, Wongvisarut</creatorcontrib><creatorcontrib>Boonyawan, Dheerawan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the science of food and agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seelarat, Weerasak</au><au>Sangwanna, Sujarinee</au><au>Chaiwon, Tawan</au><au>Panklai, Teerapap</au><au>Chaosuan, Natthaphon</au><au>Bootchanont, Atipong</au><au>Wattanawikkam, Chakkaphan</au><au>Porjai, Porramain</au><au>Khuangsatung, Wongvisarut</au><au>Boonyawan, Dheerawan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of pretreatment with dielectric barrier discharge plasma on the drying characteristics and bioactive compounds of jackfruit slices</atitle><jtitle>Journal of the science of food and agriculture</jtitle><addtitle>J Sci Food Agric</addtitle><date>2024-04</date><risdate>2024</risdate><volume>104</volume><issue>6</issue><spage>3654</spage><epage>3664</epage><pages>3654-3664</pages><issn>0022-5142</issn><eissn>1097-0010</eissn><abstract>BACKGROUND Hot‐air drying is a popular method for preserving the production of jackfruit, but heat treatment damages its nutritional qualities. Cold plasma is one of the pretreatment methods used to preserve quality attributes of fruits before drying. In the present work, we studied the effect of dielectric barrier discharge (DBD) plasma on the drying characteristics, microstructure, and bioactive compounds of jackfruit slices with different pretreatment times (15, 30, 45, and 60 s), followed by hot‐air drying at 50, 60, and 70 °C. A homemade DBD device was operated via three neon transformers. RESULTS Optical emission spectrophotometry revealed the emitted spectra of the reactive species in DBD plasma, including the N2 second positive system, N2 first negative system, nitrogen ion, and hydroxyl radical. The results showed that the DBD plasma promoted moisture transfer and enhanced the drying rate, related to the changes in the surface microstructure of samples damaged by DBD plasma. The modified Overhults model was recommended for describing the drying characteristics of jackfruit slices. The contents of ascorbic acid, total phenolics, total flavonoids, total polysaccharides, and antioxidant activity in pretreated jackfruit slices were improved by 9.64%, 42.59%, 25.77%, 27.00%, and 23.13%, respectively. However, the levels of color and carotenoids were reduced. CONCLUSION Thus, the bioactive compounds in dried jackfruit slices can be improved using the DBD plasma technique as a potential pretreatment method for the drying process. © 2023 Society of Chemical Industry.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>38158730</pmid><doi>10.1002/jsfa.13250</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3254-9466</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-5142
ispartof Journal of the science of food and agriculture, 2024-04, Vol.104 (6), p.3654-3664
issn 0022-5142
1097-0010
language eng
recordid cdi_proquest_miscellaneous_2909087490
source Wiley Online Library All Journals
subjects Air drying
antioxidant activity
Artocarpus heterophyllus
Ascorbic acid
Bioactive compounds
Biological activity
Carotenoids
Cold plasmas
Dielectric barrier discharge
dielectric barrier discharge plasma
dried jackfruit slices
Drying
Emission spectra
Flavonoids
Heat treatment
Heat treatments
Hydroxyl radicals
Jackfruit
Microstructure
Neon
Nitrogen ions
Nitrogen plasma
Phenols
Plasma
Polysaccharides
Pretreatment
Quality management
Saccharides
Spectral emittance
Spectrophotometry
Total phenolic contents
title Impact of pretreatment with dielectric barrier discharge plasma on the drying characteristics and bioactive compounds of jackfruit slices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T12%3A23%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20pretreatment%20with%20dielectric%20barrier%20discharge%20plasma%20on%20the%20drying%20characteristics%20and%20bioactive%20compounds%20of%20jackfruit%20slices&rft.jtitle=Journal%20of%20the%20science%20of%20food%20and%20agriculture&rft.au=Seelarat,%20Weerasak&rft.date=2024-04&rft.volume=104&rft.issue=6&rft.spage=3654&rft.epage=3664&rft.pages=3654-3664&rft.issn=0022-5142&rft.eissn=1097-0010&rft_id=info:doi/10.1002/jsfa.13250&rft_dat=%3Cproquest_cross%3E2909087490%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112397414&rft_id=info:pmid/38158730&rfr_iscdi=true