Deep learning innovations in diagnosing diabetic retinopathy: The potential of transfer learning and the DiaCNN model

Diabetic retinopathy (DR) is a significant cause of vision impairment, emphasizing the critical need for early detection and timely intervention to avert visual deterioration. Diagnosing DR is inherently complex, as it necessitates the meticulous examination of intricate retinal images by experience...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2024-02, Vol.169, p.107834, Article 107834
Hauptverfasser: Shoaib, Mohamed R., Emara, Heba M., Zhao, Jun, El-Shafai, Walid, Soliman, Naglaa F., Mubarak, Ahmed S., Omer, Osama A., El-Samie, Fathi E. Abd, Esmaiel, Hamada
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Diabetic retinopathy (DR) is a significant cause of vision impairment, emphasizing the critical need for early detection and timely intervention to avert visual deterioration. Diagnosing DR is inherently complex, as it necessitates the meticulous examination of intricate retinal images by experienced specialists. This makes the early diagnosis of DR essential for effective treatment and prevention of eventual blindness. Traditional diagnostic methods, relying on human interpretation of medical images, face challenges in terms of accuracy and efficiency. In the present research, we introduce a novel method that offers superior precision in DR diagnosis, compared to traditional methods, by employing advanced deep learning techniques. Central to this approach is the concept of transfer learning. This entails the utilization of pre-existing, well-established models, specifically InceptionResNetv2 and Inceptionv3, to extract features and fine-tune selected layers to cater to the unique requirements of this specific diagnostic task. Concurrently, we also present a newly devised model, DiaCNN, which is tailored for the classification of eye diseases. To prove the efficacy of the proposed methodology, we leveraged the Ocular Disease Intelligent Recognition (ODIR) dataset, which comprises eight different eye disease categories. The results are promising. The InceptionResNetv2 model, incorporating transfer learning, registered an impressive 97.5% accuracy in both the training and testing phases. Its counterpart, the Inceptionv3 model, achieved an even more commendable 99.7% accuracy during training, and 97.5% during testing. Remarkably, the DiaCNN model showcased unparalleled precision, achieving 100% accuracy in training and 98.3% in testing. These figures represent a significant leap in classification accuracy when juxtaposed with existing state-of-the-art diagnostic methods. Such advancements hold immense promise for the future, emphasizing the potential of our proposed technique to revolutionize the accuracy of DR and other eye disease diagnoses. By facilitating earlier detection and more timely interventions, this approach stands poised to significantly reduce the incidence of blindness associated with DR, thus heralding a new era of improved patient outcomes. Therefore, this work, through its novel approach and stellar results, not only pushes the boundaries of DR diagnostic accuracy but also promises a transformative impact in early detection and intervention
ISSN:0010-4825
1879-0534
1879-0534
DOI:10.1016/j.compbiomed.2023.107834