Diffusion-driven fabrication of calcium and phosphorous-doped zinc oxide heterostructures on titanium to achieve dual functions of osteogenesis and preventing bacterial infections
Conventional Ti-based implants are vulnerable to postsurgical infection and improving the antibacterial efficiency without compromising the osteogenic ability is one of the key issues in bone implant design. Although zinc oxide (ZnO) nanorods grown on Ti substrates hydrothermally can improve the ant...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2024-02, Vol.175, p.382-394 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 394 |
---|---|
container_issue | |
container_start_page | 382 |
container_title | Acta biomaterialia |
container_volume | 175 |
creator | Ullah, Ihsan Ou, Peiyan Xie, Lingxia Liao, Qing Zhao, Feilong Gao, Ang Ren, Xiaoxue Li, Yiting Wang, Guomin Wu, Zhengwei Chu, Paul K. Wang, Huaiyu Tong, Liping |
description | Conventional Ti-based implants are vulnerable to postsurgical infection and improving the antibacterial efficiency without compromising the osteogenic ability is one of the key issues in bone implant design. Although zinc oxide (ZnO) nanorods grown on Ti substrates hydrothermally can improve the antibacterial properties, but cannot meet the stringent requirements of bone implants, as rapid degradation of ZnO and uncontrolled leaching of Zn2+ are detrimental to peri-implant cells and tissues. To solve these problems, a lattice-damage-free method is adopted to modify the ZnO nanorods with thin calcium phosphate (CaP) shells. The Ca and P ions from the CaP shells diffuse thermally into the ZnO lattice to prevent the ZnO nanorods from rapid degradation and ensure the sustained release of Zn2+ ions as well. Furthermore, the designed heterostructural nanorods not only induce the osteogenic performances of MC3T3-E1 cells but also exhibit excellent antibacterial ability against S. aureus and E. coli bacteria via physical penetration. In vivo studies also reveal that hybrid Ti-ZnO@CaP5 can not only eradicates bacteria in contact, but also provides sufficient biocompatibility without causing excessive inflammation response. Our study provides insights into the design of multifunctional biomaterials for bone implants.
• A lattice-damage-free method is adopted to modify the ZnO nanorods with thin calcium phosphate (CaP) shells.
• The dynamic process of Ca and P diffusion into the ZnO lattice is analyzed by experimental verification and theoretical calculation.
• The degradation rate of ZnO nanorods is significantly decreased after CaP deposition.
• The ZnO nanorods after CaP deposition can not only sterilize bacteria in contact via physical penetration, but also provide sufficient biocompatibility and osteogenic capability without causing excessive inflammation response..
[Display omitted] |
doi_str_mv | 10.1016/j.actbio.2023.12.046 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2909085479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706123007596</els_id><sourcerecordid>2909085479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-be5cbe1bcc52d742d5d2b35580afb20172b47620482bf3c89c18cae060a030e83</originalsourceid><addsrcrecordid>eNp9kUuLFDEUhQtRnIf-A5Es3VSZpF7pjSAz6ggDbnQd8riZvk110ubRqH_LP2iKGl26CDeE8-Vwz2maV4x2jLLp7aFTJmsMHae87xjv6DA9aS6ZmEU7j5N4Wu_zwNuZTuyiuUrpQGkvGBfPm4s6JyrG_rL5fYvOlYTBtzbiGTxxSkc0KtcnEhwxajFYjkR5S077kOqJoaTWhhNY8gu9IeEHWiB7yBBDyrGYXCIkUvmMWfmVzoEos0c4A7FFLcQVb1aHtFpUCMIDeEiYNp9YhT6jfyC6LgkRK4Lewca8aJ45tSR4-Tivm28fP3y9uWvvv3z6fPP-vjUDFbnVMBoNTBszcluTsKPluh9HQZXTnLKZ62GeOB0E1643YmeYMAroRBXtKYj-unmz_XuK4XuBlOURk4FlUR5qBJLv6K6mOMy7Kh02qakRpAhOniIeVfwpGZVrXfIgt7rkWpdkXNa6Kvb60aHoI9h_0N9-quDdJoC65xkhymQQvAGLsaYhbcD_O_wB3xGuVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2909085479</pqid></control><display><type>article</type><title>Diffusion-driven fabrication of calcium and phosphorous-doped zinc oxide heterostructures on titanium to achieve dual functions of osteogenesis and preventing bacterial infections</title><source>Elsevier ScienceDirect Journals</source><creator>Ullah, Ihsan ; Ou, Peiyan ; Xie, Lingxia ; Liao, Qing ; Zhao, Feilong ; Gao, Ang ; Ren, Xiaoxue ; Li, Yiting ; Wang, Guomin ; Wu, Zhengwei ; Chu, Paul K. ; Wang, Huaiyu ; Tong, Liping</creator><creatorcontrib>Ullah, Ihsan ; Ou, Peiyan ; Xie, Lingxia ; Liao, Qing ; Zhao, Feilong ; Gao, Ang ; Ren, Xiaoxue ; Li, Yiting ; Wang, Guomin ; Wu, Zhengwei ; Chu, Paul K. ; Wang, Huaiyu ; Tong, Liping</creatorcontrib><description>Conventional Ti-based implants are vulnerable to postsurgical infection and improving the antibacterial efficiency without compromising the osteogenic ability is one of the key issues in bone implant design. Although zinc oxide (ZnO) nanorods grown on Ti substrates hydrothermally can improve the antibacterial properties, but cannot meet the stringent requirements of bone implants, as rapid degradation of ZnO and uncontrolled leaching of Zn2+ are detrimental to peri-implant cells and tissues. To solve these problems, a lattice-damage-free method is adopted to modify the ZnO nanorods with thin calcium phosphate (CaP) shells. The Ca and P ions from the CaP shells diffuse thermally into the ZnO lattice to prevent the ZnO nanorods from rapid degradation and ensure the sustained release of Zn2+ ions as well. Furthermore, the designed heterostructural nanorods not only induce the osteogenic performances of MC3T3-E1 cells but also exhibit excellent antibacterial ability against S. aureus and E. coli bacteria via physical penetration. In vivo studies also reveal that hybrid Ti-ZnO@CaP5 can not only eradicates bacteria in contact, but also provides sufficient biocompatibility without causing excessive inflammation response. Our study provides insights into the design of multifunctional biomaterials for bone implants.
• A lattice-damage-free method is adopted to modify the ZnO nanorods with thin calcium phosphate (CaP) shells.
• The dynamic process of Ca and P diffusion into the ZnO lattice is analyzed by experimental verification and theoretical calculation.
• The degradation rate of ZnO nanorods is significantly decreased after CaP deposition.
• The ZnO nanorods after CaP deposition can not only sterilize bacteria in contact via physical penetration, but also provide sufficient biocompatibility and osteogenic capability without causing excessive inflammation response..
[Display omitted]</description><identifier>ISSN: 1742-7061</identifier><identifier>ISSN: 1878-7568</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2023.12.046</identifier><identifier>PMID: 38160853</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Antibacterial ability ; Bone implants ; Mechanism analysis ; Thermal diffusion ; Zinc oxide nanorods</subject><ispartof>Acta biomaterialia, 2024-02, Vol.175, p.382-394</ispartof><rights>2023 The Author(s)</rights><rights>Copyright © 2023 The Author(s). Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-be5cbe1bcc52d742d5d2b35580afb20172b47620482bf3c89c18cae060a030e83</citedby><cites>FETCH-LOGICAL-c408t-be5cbe1bcc52d742d5d2b35580afb20172b47620482bf3c89c18cae060a030e83</cites><orcidid>0000-0002-3500-5990 ; 0000-0002-5581-4883 ; 0000-0002-7189-9944 ; 0009-0008-1437-6734</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1742706123007596$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38160853$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ullah, Ihsan</creatorcontrib><creatorcontrib>Ou, Peiyan</creatorcontrib><creatorcontrib>Xie, Lingxia</creatorcontrib><creatorcontrib>Liao, Qing</creatorcontrib><creatorcontrib>Zhao, Feilong</creatorcontrib><creatorcontrib>Gao, Ang</creatorcontrib><creatorcontrib>Ren, Xiaoxue</creatorcontrib><creatorcontrib>Li, Yiting</creatorcontrib><creatorcontrib>Wang, Guomin</creatorcontrib><creatorcontrib>Wu, Zhengwei</creatorcontrib><creatorcontrib>Chu, Paul K.</creatorcontrib><creatorcontrib>Wang, Huaiyu</creatorcontrib><creatorcontrib>Tong, Liping</creatorcontrib><title>Diffusion-driven fabrication of calcium and phosphorous-doped zinc oxide heterostructures on titanium to achieve dual functions of osteogenesis and preventing bacterial infections</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>Conventional Ti-based implants are vulnerable to postsurgical infection and improving the antibacterial efficiency without compromising the osteogenic ability is one of the key issues in bone implant design. Although zinc oxide (ZnO) nanorods grown on Ti substrates hydrothermally can improve the antibacterial properties, but cannot meet the stringent requirements of bone implants, as rapid degradation of ZnO and uncontrolled leaching of Zn2+ are detrimental to peri-implant cells and tissues. To solve these problems, a lattice-damage-free method is adopted to modify the ZnO nanorods with thin calcium phosphate (CaP) shells. The Ca and P ions from the CaP shells diffuse thermally into the ZnO lattice to prevent the ZnO nanorods from rapid degradation and ensure the sustained release of Zn2+ ions as well. Furthermore, the designed heterostructural nanorods not only induce the osteogenic performances of MC3T3-E1 cells but also exhibit excellent antibacterial ability against S. aureus and E. coli bacteria via physical penetration. In vivo studies also reveal that hybrid Ti-ZnO@CaP5 can not only eradicates bacteria in contact, but also provides sufficient biocompatibility without causing excessive inflammation response. Our study provides insights into the design of multifunctional biomaterials for bone implants.
• A lattice-damage-free method is adopted to modify the ZnO nanorods with thin calcium phosphate (CaP) shells.
• The dynamic process of Ca and P diffusion into the ZnO lattice is analyzed by experimental verification and theoretical calculation.
• The degradation rate of ZnO nanorods is significantly decreased after CaP deposition.
• The ZnO nanorods after CaP deposition can not only sterilize bacteria in contact via physical penetration, but also provide sufficient biocompatibility and osteogenic capability without causing excessive inflammation response..
[Display omitted]</description><subject>Antibacterial ability</subject><subject>Bone implants</subject><subject>Mechanism analysis</subject><subject>Thermal diffusion</subject><subject>Zinc oxide nanorods</subject><issn>1742-7061</issn><issn>1878-7568</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kUuLFDEUhQtRnIf-A5Es3VSZpF7pjSAz6ggDbnQd8riZvk110ubRqH_LP2iKGl26CDeE8-Vwz2maV4x2jLLp7aFTJmsMHae87xjv6DA9aS6ZmEU7j5N4Wu_zwNuZTuyiuUrpQGkvGBfPm4s6JyrG_rL5fYvOlYTBtzbiGTxxSkc0KtcnEhwxajFYjkR5S077kOqJoaTWhhNY8gu9IeEHWiB7yBBDyrGYXCIkUvmMWfmVzoEos0c4A7FFLcQVb1aHtFpUCMIDeEiYNp9YhT6jfyC6LgkRK4Lewca8aJ45tSR4-Tivm28fP3y9uWvvv3z6fPP-vjUDFbnVMBoNTBszcluTsKPluh9HQZXTnLKZ62GeOB0E1643YmeYMAroRBXtKYj-unmz_XuK4XuBlOURk4FlUR5qBJLv6K6mOMy7Kh02qakRpAhOniIeVfwpGZVrXfIgt7rkWpdkXNa6Kvb60aHoI9h_0N9-quDdJoC65xkhymQQvAGLsaYhbcD_O_wB3xGuVw</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Ullah, Ihsan</creator><creator>Ou, Peiyan</creator><creator>Xie, Lingxia</creator><creator>Liao, Qing</creator><creator>Zhao, Feilong</creator><creator>Gao, Ang</creator><creator>Ren, Xiaoxue</creator><creator>Li, Yiting</creator><creator>Wang, Guomin</creator><creator>Wu, Zhengwei</creator><creator>Chu, Paul K.</creator><creator>Wang, Huaiyu</creator><creator>Tong, Liping</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3500-5990</orcidid><orcidid>https://orcid.org/0000-0002-5581-4883</orcidid><orcidid>https://orcid.org/0000-0002-7189-9944</orcidid><orcidid>https://orcid.org/0009-0008-1437-6734</orcidid></search><sort><creationdate>20240201</creationdate><title>Diffusion-driven fabrication of calcium and phosphorous-doped zinc oxide heterostructures on titanium to achieve dual functions of osteogenesis and preventing bacterial infections</title><author>Ullah, Ihsan ; Ou, Peiyan ; Xie, Lingxia ; Liao, Qing ; Zhao, Feilong ; Gao, Ang ; Ren, Xiaoxue ; Li, Yiting ; Wang, Guomin ; Wu, Zhengwei ; Chu, Paul K. ; Wang, Huaiyu ; Tong, Liping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-be5cbe1bcc52d742d5d2b35580afb20172b47620482bf3c89c18cae060a030e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antibacterial ability</topic><topic>Bone implants</topic><topic>Mechanism analysis</topic><topic>Thermal diffusion</topic><topic>Zinc oxide nanorods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ullah, Ihsan</creatorcontrib><creatorcontrib>Ou, Peiyan</creatorcontrib><creatorcontrib>Xie, Lingxia</creatorcontrib><creatorcontrib>Liao, Qing</creatorcontrib><creatorcontrib>Zhao, Feilong</creatorcontrib><creatorcontrib>Gao, Ang</creatorcontrib><creatorcontrib>Ren, Xiaoxue</creatorcontrib><creatorcontrib>Li, Yiting</creatorcontrib><creatorcontrib>Wang, Guomin</creatorcontrib><creatorcontrib>Wu, Zhengwei</creatorcontrib><creatorcontrib>Chu, Paul K.</creatorcontrib><creatorcontrib>Wang, Huaiyu</creatorcontrib><creatorcontrib>Tong, Liping</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ullah, Ihsan</au><au>Ou, Peiyan</au><au>Xie, Lingxia</au><au>Liao, Qing</au><au>Zhao, Feilong</au><au>Gao, Ang</au><au>Ren, Xiaoxue</au><au>Li, Yiting</au><au>Wang, Guomin</au><au>Wu, Zhengwei</au><au>Chu, Paul K.</au><au>Wang, Huaiyu</au><au>Tong, Liping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion-driven fabrication of calcium and phosphorous-doped zinc oxide heterostructures on titanium to achieve dual functions of osteogenesis and preventing bacterial infections</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>175</volume><spage>382</spage><epage>394</epage><pages>382-394</pages><issn>1742-7061</issn><issn>1878-7568</issn><eissn>1878-7568</eissn><abstract>Conventional Ti-based implants are vulnerable to postsurgical infection and improving the antibacterial efficiency without compromising the osteogenic ability is one of the key issues in bone implant design. Although zinc oxide (ZnO) nanorods grown on Ti substrates hydrothermally can improve the antibacterial properties, but cannot meet the stringent requirements of bone implants, as rapid degradation of ZnO and uncontrolled leaching of Zn2+ are detrimental to peri-implant cells and tissues. To solve these problems, a lattice-damage-free method is adopted to modify the ZnO nanorods with thin calcium phosphate (CaP) shells. The Ca and P ions from the CaP shells diffuse thermally into the ZnO lattice to prevent the ZnO nanorods from rapid degradation and ensure the sustained release of Zn2+ ions as well. Furthermore, the designed heterostructural nanorods not only induce the osteogenic performances of MC3T3-E1 cells but also exhibit excellent antibacterial ability against S. aureus and E. coli bacteria via physical penetration. In vivo studies also reveal that hybrid Ti-ZnO@CaP5 can not only eradicates bacteria in contact, but also provides sufficient biocompatibility without causing excessive inflammation response. Our study provides insights into the design of multifunctional biomaterials for bone implants.
• A lattice-damage-free method is adopted to modify the ZnO nanorods with thin calcium phosphate (CaP) shells.
• The dynamic process of Ca and P diffusion into the ZnO lattice is analyzed by experimental verification and theoretical calculation.
• The degradation rate of ZnO nanorods is significantly decreased after CaP deposition.
• The ZnO nanorods after CaP deposition can not only sterilize bacteria in contact via physical penetration, but also provide sufficient biocompatibility and osteogenic capability without causing excessive inflammation response..
[Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>38160853</pmid><doi>10.1016/j.actbio.2023.12.046</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3500-5990</orcidid><orcidid>https://orcid.org/0000-0002-5581-4883</orcidid><orcidid>https://orcid.org/0000-0002-7189-9944</orcidid><orcidid>https://orcid.org/0009-0008-1437-6734</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-7061 |
ispartof | Acta biomaterialia, 2024-02, Vol.175, p.382-394 |
issn | 1742-7061 1878-7568 1878-7568 |
language | eng |
recordid | cdi_proquest_miscellaneous_2909085479 |
source | Elsevier ScienceDirect Journals |
subjects | Antibacterial ability Bone implants Mechanism analysis Thermal diffusion Zinc oxide nanorods |
title | Diffusion-driven fabrication of calcium and phosphorous-doped zinc oxide heterostructures on titanium to achieve dual functions of osteogenesis and preventing bacterial infections |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T08%3A48%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion-driven%20fabrication%20of%20calcium%20and%20phosphorous-doped%20zinc%20oxide%20heterostructures%20on%20titanium%20to%20achieve%20dual%20functions%20of%20osteogenesis%20and%20preventing%20bacterial%20infections&rft.jtitle=Acta%20biomaterialia&rft.au=Ullah,%20Ihsan&rft.date=2024-02-01&rft.volume=175&rft.spage=382&rft.epage=394&rft.pages=382-394&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2023.12.046&rft_dat=%3Cproquest_cross%3E2909085479%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2909085479&rft_id=info:pmid/38160853&rft_els_id=S1742706123007596&rfr_iscdi=true |