Enhanced biomethane production from waste activated sludge anaerobic digestion by ceramsite and amended Fe2O3 ceramsite

Wastes recycling and reutilization technique could simultaneously fulfill waste control and energy recovery sustainably, which has attracted increasing attention. This work proposed a novel waste reuse technology utilizing ceramsite and amended Fe2O3-ceramsite made from waste activated sludge (WAS)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental management 2024-02, Vol.351, p.119973-119973, Article 119973
Hauptverfasser: Shen, Dongsheng, Zhang, Pengqu, Wu, Shu-Lin, Long, Yuyang, Wei, Wei, Ni, Bing-Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wastes recycling and reutilization technique could simultaneously fulfill waste control and energy recovery sustainably, which has attracted increasing attention. This work proposed a novel waste reuse technology utilizing ceramsite and amended Fe2O3-ceramsite made from waste activated sludge (WAS) as additives to promote the yield of methane from WAS anaerobic digestion (AD). Experimental results demonstrated that compared to the control (85.05 ± 0.2 mL CH4/g-VS), the cumulative methane yield was effectively enhanced by 14% and 40% when ceramsite and Fe2O3-ceramsite were added. Further investigation revealed that ceramsite, especially the Fe2O3-ceramsite, enriched the populations of key anaerobes involved in hydrolysis, acidification, and methanogenesis. Meanwhile, potential syntrophic metabolisms between syntrophic bacteria and methanogens were confirmed in the Fe2O3-ceramsite AD system. Mechanisms studies exhibited that ceramsite and Fe2O3-ceramsite reinforced intermediate processes for methane production. The favorable pore structure, enhanced Fe (III) reduction capacity and conductivity also contributed a lot to the AD process. [Display omitted] •Amended Fe2O3-ceramsite was more favorable to enhance WAS anaerobic digestion.•Ceramsite enriched functional microbes and constructed potential syntrophic metabolisms.•Intermediate processes for methane production were all enhanced by ceramsite.•Better pore structure and enhanced conductivity facilitated the methane production.
ISSN:0301-4797
1095-8630
DOI:10.1016/j.jenvman.2023.119973