Toward Estimating Climatic Trends in SST. Part II: Random Errors
Random observational errors for sea surface temperature (SST) are estimated using merchant ship reports from the International Comprehensive Ocean-Atmosphere Data Set (ICOADS) for the period of 1970-97. A statistical technique, semivariogram analysis, is used to isolate the variance resulting from t...
Gespeichert in:
Veröffentlicht in: | Journal of atmospheric and oceanic technology 2006-03, Vol.23 (3), p.476-486 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 486 |
---|---|
container_issue | 3 |
container_start_page | 476 |
container_title | Journal of atmospheric and oceanic technology |
container_volume | 23 |
creator | Kent, E C Challenor, P G |
description | Random observational errors for sea surface temperature (SST) are estimated using merchant ship reports from the International Comprehensive Ocean-Atmosphere Data Set (ICOADS) for the period of 1970-97. A statistical technique, semivariogram analysis, is used to isolate the variance resulting from the observational error from that resulting from the spatial variability in a dataset of the differences of paired SST reports. The method is largely successful, although there is some evidence that in high-variability regions the separation of random and spatial error is not complete, which may have led to an overestimate of the random observational error in these regions. The error estimates are robust to changes in the details of the regression method used to estimate the spatial variability. The resulting error estimates are shown to vary with region, time, the quality control applied, the method of measurement, the recruiting country, and the source of the data. SST data measured using buckets typically contain smaller random errors than those measured using an engine-intake thermometer. Errors are larger in the 1970s, probably because of problems with data transmission in the early days of the Global Telecommunications System. The best estimate of the global average random error in ICOADS ship SST for the period of 1970-97 is 1.2'C if the estimates are weighted by ocean area and 1.3'C if the estimates are weighted by the number of observations. |
doi_str_mv | 10.1175/JTECH1844.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29089289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1022353821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-f48bc06d1daee9aae05c0c4ea54bf1f3526f5fd7e7cdee964687257a9905bee3</originalsourceid><addsrcrecordid>eNqF0U1Lw0AQBuBFFKzVk39g8eBFUmf2I5v1pIRoKwXF5r5sNxtJaZO6myL-e6MVD148zRweXph5CTlHmCAqef1YFvkUMyEmeEBGKBkkIFh6SEaguE5AKnZMTmJcAQByTEfktuzebahoEftmY_umfaX5-ntztAy-rSJtWrpYlBP6bENPZ7Mb-mLbqtvQIoQuxFNyVNt19Gc_c0zK-6LMp8n86WGW380TxzX0SS2ypYO0wsp6r631IB044a0UyxprLllay7pSXrlqAKlIM8WkslqDXHrPx-RyH7sN3dvOx95smuj8em1b3-2iYRoyzTL9P8wQBM_UvxAVYqozHODFH7jqdqEdjjWMMclRczmgqz1yoYsx-Npsw_DG8GEQzFc35rcbg_wT7VN_bw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222531935</pqid></control><display><type>article</type><title>Toward Estimating Climatic Trends in SST. Part II: Random Errors</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Kent, E C ; Challenor, P G</creator><creatorcontrib>Kent, E C ; Challenor, P G</creatorcontrib><description>Random observational errors for sea surface temperature (SST) are estimated using merchant ship reports from the International Comprehensive Ocean-Atmosphere Data Set (ICOADS) for the period of 1970-97. A statistical technique, semivariogram analysis, is used to isolate the variance resulting from the observational error from that resulting from the spatial variability in a dataset of the differences of paired SST reports. The method is largely successful, although there is some evidence that in high-variability regions the separation of random and spatial error is not complete, which may have led to an overestimate of the random observational error in these regions. The error estimates are robust to changes in the details of the regression method used to estimate the spatial variability. The resulting error estimates are shown to vary with region, time, the quality control applied, the method of measurement, the recruiting country, and the source of the data. SST data measured using buckets typically contain smaller random errors than those measured using an engine-intake thermometer. Errors are larger in the 1970s, probably because of problems with data transmission in the early days of the Global Telecommunications System. The best estimate of the global average random error in ICOADS ship SST for the period of 1970-97 is 1.2'C if the estimates are weighted by ocean area and 1.3'C if the estimates are weighted by the number of observations.</description><identifier>ISSN: 0739-0572</identifier><identifier>EISSN: 1520-0426</identifier><identifier>DOI: 10.1175/JTECH1844.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Climate change ; Data transmission ; Measurement errors ; Ocean temperature ; Oceanography ; Quality control ; Sea surface temperature</subject><ispartof>Journal of atmospheric and oceanic technology, 2006-03, Vol.23 (3), p.476-486</ispartof><rights>Copyright American Meteorological Society Mar 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-f48bc06d1daee9aae05c0c4ea54bf1f3526f5fd7e7cdee964687257a9905bee3</citedby><cites>FETCH-LOGICAL-c390t-f48bc06d1daee9aae05c0c4ea54bf1f3526f5fd7e7cdee964687257a9905bee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3668,27901,27902</link.rule.ids></links><search><creatorcontrib>Kent, E C</creatorcontrib><creatorcontrib>Challenor, P G</creatorcontrib><title>Toward Estimating Climatic Trends in SST. Part II: Random Errors</title><title>Journal of atmospheric and oceanic technology</title><description>Random observational errors for sea surface temperature (SST) are estimated using merchant ship reports from the International Comprehensive Ocean-Atmosphere Data Set (ICOADS) for the period of 1970-97. A statistical technique, semivariogram analysis, is used to isolate the variance resulting from the observational error from that resulting from the spatial variability in a dataset of the differences of paired SST reports. The method is largely successful, although there is some evidence that in high-variability regions the separation of random and spatial error is not complete, which may have led to an overestimate of the random observational error in these regions. The error estimates are robust to changes in the details of the regression method used to estimate the spatial variability. The resulting error estimates are shown to vary with region, time, the quality control applied, the method of measurement, the recruiting country, and the source of the data. SST data measured using buckets typically contain smaller random errors than those measured using an engine-intake thermometer. Errors are larger in the 1970s, probably because of problems with data transmission in the early days of the Global Telecommunications System. The best estimate of the global average random error in ICOADS ship SST for the period of 1970-97 is 1.2'C if the estimates are weighted by ocean area and 1.3'C if the estimates are weighted by the number of observations.</description><subject>Climate change</subject><subject>Data transmission</subject><subject>Measurement errors</subject><subject>Ocean temperature</subject><subject>Oceanography</subject><subject>Quality control</subject><subject>Sea surface temperature</subject><issn>0739-0572</issn><issn>1520-0426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0U1Lw0AQBuBFFKzVk39g8eBFUmf2I5v1pIRoKwXF5r5sNxtJaZO6myL-e6MVD148zRweXph5CTlHmCAqef1YFvkUMyEmeEBGKBkkIFh6SEaguE5AKnZMTmJcAQByTEfktuzebahoEftmY_umfaX5-ntztAy-rSJtWrpYlBP6bENPZ7Mb-mLbqtvQIoQuxFNyVNt19Gc_c0zK-6LMp8n86WGW380TxzX0SS2ypYO0wsp6r631IB044a0UyxprLllay7pSXrlqAKlIM8WkslqDXHrPx-RyH7sN3dvOx95smuj8em1b3-2iYRoyzTL9P8wQBM_UvxAVYqozHODFH7jqdqEdjjWMMclRczmgqz1yoYsx-Npsw_DG8GEQzFc35rcbg_wT7VN_bw</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>Kent, E C</creator><creator>Challenor, P G</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20060301</creationdate><title>Toward Estimating Climatic Trends in SST. Part II: Random Errors</title><author>Kent, E C ; Challenor, P G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-f48bc06d1daee9aae05c0c4ea54bf1f3526f5fd7e7cdee964687257a9905bee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Climate change</topic><topic>Data transmission</topic><topic>Measurement errors</topic><topic>Ocean temperature</topic><topic>Oceanography</topic><topic>Quality control</topic><topic>Sea surface temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kent, E C</creatorcontrib><creatorcontrib>Challenor, P G</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of atmospheric and oceanic technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kent, E C</au><au>Challenor, P G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Estimating Climatic Trends in SST. Part II: Random Errors</atitle><jtitle>Journal of atmospheric and oceanic technology</jtitle><date>2006-03-01</date><risdate>2006</risdate><volume>23</volume><issue>3</issue><spage>476</spage><epage>486</epage><pages>476-486</pages><issn>0739-0572</issn><eissn>1520-0426</eissn><abstract>Random observational errors for sea surface temperature (SST) are estimated using merchant ship reports from the International Comprehensive Ocean-Atmosphere Data Set (ICOADS) for the period of 1970-97. A statistical technique, semivariogram analysis, is used to isolate the variance resulting from the observational error from that resulting from the spatial variability in a dataset of the differences of paired SST reports. The method is largely successful, although there is some evidence that in high-variability regions the separation of random and spatial error is not complete, which may have led to an overestimate of the random observational error in these regions. The error estimates are robust to changes in the details of the regression method used to estimate the spatial variability. The resulting error estimates are shown to vary with region, time, the quality control applied, the method of measurement, the recruiting country, and the source of the data. SST data measured using buckets typically contain smaller random errors than those measured using an engine-intake thermometer. Errors are larger in the 1970s, probably because of problems with data transmission in the early days of the Global Telecommunications System. The best estimate of the global average random error in ICOADS ship SST for the period of 1970-97 is 1.2'C if the estimates are weighted by ocean area and 1.3'C if the estimates are weighted by the number of observations.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JTECH1844.1</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0739-0572 |
ispartof | Journal of atmospheric and oceanic technology, 2006-03, Vol.23 (3), p.476-486 |
issn | 0739-0572 1520-0426 |
language | eng |
recordid | cdi_proquest_miscellaneous_29089289 |
source | American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Climate change Data transmission Measurement errors Ocean temperature Oceanography Quality control Sea surface temperature |
title | Toward Estimating Climatic Trends in SST. Part II: Random Errors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A07%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Estimating%20Climatic%20Trends%20in%20SST.%20Part%20II:%20Random%20Errors&rft.jtitle=Journal%20of%20atmospheric%20and%20oceanic%20technology&rft.au=Kent,%20E%20C&rft.date=2006-03-01&rft.volume=23&rft.issue=3&rft.spage=476&rft.epage=486&rft.pages=476-486&rft.issn=0739-0572&rft.eissn=1520-0426&rft_id=info:doi/10.1175/JTECH1844.1&rft_dat=%3Cproquest_cross%3E1022353821%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222531935&rft_id=info:pmid/&rfr_iscdi=true |