Gradual gradient distribution composite solid electrolyte for solid-state lithium metal batteries with ameliorated electrochemical performance

Li6.4La3Zr1.4Ta0.6O12 (LLZTO) exhibited a gradual gradient distribution from the center to the periphery in PEO, demonstrating exceptional electrochemical properties and representing a promising high-performance material for all-solid-state lithium metal batteries. [Display omitted] •GCSE with LLZTO...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2024-03, Vol.658, p.836-845
Hauptverfasser: Zhang, Xiaobao, Zhao, Huan, Wang, Ning, Xiao, Yiyang, Liang, Shiang, Yang, Juanyu, Huang, Xiaowei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 845
container_issue
container_start_page 836
container_title Journal of colloid and interface science
container_volume 658
creator Zhang, Xiaobao
Zhao, Huan
Wang, Ning
Xiao, Yiyang
Liang, Shiang
Yang, Juanyu
Huang, Xiaowei
description Li6.4La3Zr1.4Ta0.6O12 (LLZTO) exhibited a gradual gradient distribution from the center to the periphery in PEO, demonstrating exceptional electrochemical properties and representing a promising high-performance material for all-solid-state lithium metal batteries. [Display omitted] •GCSE with LLZTO gradient descending from center to edge were prepared.•There is no distinct macroscopic interface between GCSE layers with high ionic conductivity.•The cycle stability time of Li|GCSE|Li exceeds 1200 h.•LiFePO4|GCSE|Li battery enable high energy density and cycling stability. Composite solid electrolytes (CSEs) have emerged as promising contenders for tackling the safety concerns associated with lithium metal batteries and attaining elevated energy densities. Nonetheless, augmenting ion conductivity and curtailing the growth of lithium dendrites within the electrolyte remain pressing challenges. We have developed CSEs featuring a unique structure, in which Li6.4La3Zr1.4Ta0.6O12 (LLZTO) is distributed in a gradient decline from the center to both sides (GCSE). This distinctive arrangement encompasses heightened polymer content at the edges, thereby enhancing the compatibility between CSEs and electrode materials. Concurrently, the escalated LLZTO content at the center functions to impede the proliferation of lithium dendrites. The uniform gradient distribution state facilitates the consistent and rapid transport of lithium ions. At room temperature, GCSE exhibits an ionic conductivity of 1.5 × 10−4 S cm−1, with stable constant current cycling of lithium for over 1200 h. Furthermore, CR2032 coin batteries with a LiFePO4 (LFP)|GCSE|Li configuration demonstrate excellent rate performance and cycling stability, yielding a discharge capacity of 120 mA h g−1 at 0.5C and retaining 90 % capacity after 200 cycles at 60 °C. Flexible solid electrolytes with gradient structures offer substantial advantages in dealing with ion conductivity and inhibition of lithium dendrites, thereby expected to propel the practical application of lithium metal batteries.
doi_str_mv 10.1016/j.jcis.2023.12.120
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2908123884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979723024414</els_id><sourcerecordid>2908123884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-52cf5995621104e68ae3b97233764ff722f9bd8654859789ace64dd2316d63ff3</originalsourceid><addsrcrecordid>eNp9kc1qHDEQhIVJiNdOXsAHM8dcZq2fkWYEuRgT_4DBF-csNFLL1iKtNpLGwS-RZ46WtX0MNDQqqj9QFUJnBK8JJuJis94YX9YUU7YmtA0-QiuCJe9HgtkntMKYkl6OcjxGJ6VsMCaEc_kFHbOJ8IEOYoX-3mRtFx26p7Y9bGtnfanZz0v1aduZFHep-ApdScHbDgKYmlN4bYpL-aD2per2Dr4--yV2EWrjzbpWyB5K96fpnY4QfMrN9wExzxC9adYd5MaKemvgK_rsdCjw7W2fol_XPx-vbvv7h5u7q8v73jAuas-pcVxKLigheAAxaWCzHCljoxicGyl1craT4MPE5ThJbUAM1lJGhBXMOXaKvh-4u5x-L1Cqir4YCEFvIS1FUYknQtk0Dc1KD1aTUykZnNplH3V-VQSrfQ9qo_Y9qH0PitA2uB2dv_GXOYL9OHkPvhl-HAzQfvniIatiWvwGrM8tHWWT_x__Hz68nR4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2908123884</pqid></control><display><type>article</type><title>Gradual gradient distribution composite solid electrolyte for solid-state lithium metal batteries with ameliorated electrochemical performance</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Zhang, Xiaobao ; Zhao, Huan ; Wang, Ning ; Xiao, Yiyang ; Liang, Shiang ; Yang, Juanyu ; Huang, Xiaowei</creator><creatorcontrib>Zhang, Xiaobao ; Zhao, Huan ; Wang, Ning ; Xiao, Yiyang ; Liang, Shiang ; Yang, Juanyu ; Huang, Xiaowei</creatorcontrib><description>Li6.4La3Zr1.4Ta0.6O12 (LLZTO) exhibited a gradual gradient distribution from the center to the periphery in PEO, demonstrating exceptional electrochemical properties and representing a promising high-performance material for all-solid-state lithium metal batteries. [Display omitted] •GCSE with LLZTO gradient descending from center to edge were prepared.•There is no distinct macroscopic interface between GCSE layers with high ionic conductivity.•The cycle stability time of Li|GCSE|Li exceeds 1200 h.•LiFePO4|GCSE|Li battery enable high energy density and cycling stability. Composite solid electrolytes (CSEs) have emerged as promising contenders for tackling the safety concerns associated with lithium metal batteries and attaining elevated energy densities. Nonetheless, augmenting ion conductivity and curtailing the growth of lithium dendrites within the electrolyte remain pressing challenges. We have developed CSEs featuring a unique structure, in which Li6.4La3Zr1.4Ta0.6O12 (LLZTO) is distributed in a gradient decline from the center to both sides (GCSE). This distinctive arrangement encompasses heightened polymer content at the edges, thereby enhancing the compatibility between CSEs and electrode materials. Concurrently, the escalated LLZTO content at the center functions to impede the proliferation of lithium dendrites. The uniform gradient distribution state facilitates the consistent and rapid transport of lithium ions. At room temperature, GCSE exhibits an ionic conductivity of 1.5 × 10−4 S cm−1, with stable constant current cycling of lithium for over 1200 h. Furthermore, CR2032 coin batteries with a LiFePO4 (LFP)|GCSE|Li configuration demonstrate excellent rate performance and cycling stability, yielding a discharge capacity of 120 mA h g−1 at 0.5C and retaining 90 % capacity after 200 cycles at 60 °C. Flexible solid electrolytes with gradient structures offer substantial advantages in dealing with ion conductivity and inhibition of lithium dendrites, thereby expected to propel the practical application of lithium metal batteries.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2023.12.120</identifier><identifier>PMID: 38154246</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>All-solid-state lithium metal battery ; Composite solid electrolytes ; Gradient distribution ; Li6.4La3Zr1.4Ta0.6O12 ; Lithium dendrite</subject><ispartof>Journal of colloid and interface science, 2024-03, Vol.658, p.836-845</ispartof><rights>2023 Elsevier Inc.</rights><rights>Copyright © 2023 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-52cf5995621104e68ae3b97233764ff722f9bd8654859789ace64dd2316d63ff3</citedby><cites>FETCH-LOGICAL-c356t-52cf5995621104e68ae3b97233764ff722f9bd8654859789ace64dd2316d63ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2023.12.120$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38154246$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Xiaobao</creatorcontrib><creatorcontrib>Zhao, Huan</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Xiao, Yiyang</creatorcontrib><creatorcontrib>Liang, Shiang</creatorcontrib><creatorcontrib>Yang, Juanyu</creatorcontrib><creatorcontrib>Huang, Xiaowei</creatorcontrib><title>Gradual gradient distribution composite solid electrolyte for solid-state lithium metal batteries with ameliorated electrochemical performance</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>Li6.4La3Zr1.4Ta0.6O12 (LLZTO) exhibited a gradual gradient distribution from the center to the periphery in PEO, demonstrating exceptional electrochemical properties and representing a promising high-performance material for all-solid-state lithium metal batteries. [Display omitted] •GCSE with LLZTO gradient descending from center to edge were prepared.•There is no distinct macroscopic interface between GCSE layers with high ionic conductivity.•The cycle stability time of Li|GCSE|Li exceeds 1200 h.•LiFePO4|GCSE|Li battery enable high energy density and cycling stability. Composite solid electrolytes (CSEs) have emerged as promising contenders for tackling the safety concerns associated with lithium metal batteries and attaining elevated energy densities. Nonetheless, augmenting ion conductivity and curtailing the growth of lithium dendrites within the electrolyte remain pressing challenges. We have developed CSEs featuring a unique structure, in which Li6.4La3Zr1.4Ta0.6O12 (LLZTO) is distributed in a gradient decline from the center to both sides (GCSE). This distinctive arrangement encompasses heightened polymer content at the edges, thereby enhancing the compatibility between CSEs and electrode materials. Concurrently, the escalated LLZTO content at the center functions to impede the proliferation of lithium dendrites. The uniform gradient distribution state facilitates the consistent and rapid transport of lithium ions. At room temperature, GCSE exhibits an ionic conductivity of 1.5 × 10−4 S cm−1, with stable constant current cycling of lithium for over 1200 h. Furthermore, CR2032 coin batteries with a LiFePO4 (LFP)|GCSE|Li configuration demonstrate excellent rate performance and cycling stability, yielding a discharge capacity of 120 mA h g−1 at 0.5C and retaining 90 % capacity after 200 cycles at 60 °C. Flexible solid electrolytes with gradient structures offer substantial advantages in dealing with ion conductivity and inhibition of lithium dendrites, thereby expected to propel the practical application of lithium metal batteries.</description><subject>All-solid-state lithium metal battery</subject><subject>Composite solid electrolytes</subject><subject>Gradient distribution</subject><subject>Li6.4La3Zr1.4Ta0.6O12</subject><subject>Lithium dendrite</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kc1qHDEQhIVJiNdOXsAHM8dcZq2fkWYEuRgT_4DBF-csNFLL1iKtNpLGwS-RZ46WtX0MNDQqqj9QFUJnBK8JJuJis94YX9YUU7YmtA0-QiuCJe9HgtkntMKYkl6OcjxGJ6VsMCaEc_kFHbOJ8IEOYoX-3mRtFx26p7Y9bGtnfanZz0v1aduZFHep-ApdScHbDgKYmlN4bYpL-aD2per2Dr4--yV2EWrjzbpWyB5K96fpnY4QfMrN9wExzxC9adYd5MaKemvgK_rsdCjw7W2fol_XPx-vbvv7h5u7q8v73jAuas-pcVxKLigheAAxaWCzHCljoxicGyl1craT4MPE5ThJbUAM1lJGhBXMOXaKvh-4u5x-L1Cqir4YCEFvIS1FUYknQtk0Dc1KD1aTUykZnNplH3V-VQSrfQ9qo_Y9qH0PitA2uB2dv_GXOYL9OHkPvhl-HAzQfvniIatiWvwGrM8tHWWT_x__Hz68nR4</recordid><startdate>20240315</startdate><enddate>20240315</enddate><creator>Zhang, Xiaobao</creator><creator>Zhao, Huan</creator><creator>Wang, Ning</creator><creator>Xiao, Yiyang</creator><creator>Liang, Shiang</creator><creator>Yang, Juanyu</creator><creator>Huang, Xiaowei</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20240315</creationdate><title>Gradual gradient distribution composite solid electrolyte for solid-state lithium metal batteries with ameliorated electrochemical performance</title><author>Zhang, Xiaobao ; Zhao, Huan ; Wang, Ning ; Xiao, Yiyang ; Liang, Shiang ; Yang, Juanyu ; Huang, Xiaowei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-52cf5995621104e68ae3b97233764ff722f9bd8654859789ace64dd2316d63ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>All-solid-state lithium metal battery</topic><topic>Composite solid electrolytes</topic><topic>Gradient distribution</topic><topic>Li6.4La3Zr1.4Ta0.6O12</topic><topic>Lithium dendrite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiaobao</creatorcontrib><creatorcontrib>Zhao, Huan</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Xiao, Yiyang</creatorcontrib><creatorcontrib>Liang, Shiang</creatorcontrib><creatorcontrib>Yang, Juanyu</creatorcontrib><creatorcontrib>Huang, Xiaowei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xiaobao</au><au>Zhao, Huan</au><au>Wang, Ning</au><au>Xiao, Yiyang</au><au>Liang, Shiang</au><au>Yang, Juanyu</au><au>Huang, Xiaowei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gradual gradient distribution composite solid electrolyte for solid-state lithium metal batteries with ameliorated electrochemical performance</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2024-03-15</date><risdate>2024</risdate><volume>658</volume><spage>836</spage><epage>845</epage><pages>836-845</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>Li6.4La3Zr1.4Ta0.6O12 (LLZTO) exhibited a gradual gradient distribution from the center to the periphery in PEO, demonstrating exceptional electrochemical properties and representing a promising high-performance material for all-solid-state lithium metal batteries. [Display omitted] •GCSE with LLZTO gradient descending from center to edge were prepared.•There is no distinct macroscopic interface between GCSE layers with high ionic conductivity.•The cycle stability time of Li|GCSE|Li exceeds 1200 h.•LiFePO4|GCSE|Li battery enable high energy density and cycling stability. Composite solid electrolytes (CSEs) have emerged as promising contenders for tackling the safety concerns associated with lithium metal batteries and attaining elevated energy densities. Nonetheless, augmenting ion conductivity and curtailing the growth of lithium dendrites within the electrolyte remain pressing challenges. We have developed CSEs featuring a unique structure, in which Li6.4La3Zr1.4Ta0.6O12 (LLZTO) is distributed in a gradient decline from the center to both sides (GCSE). This distinctive arrangement encompasses heightened polymer content at the edges, thereby enhancing the compatibility between CSEs and electrode materials. Concurrently, the escalated LLZTO content at the center functions to impede the proliferation of lithium dendrites. The uniform gradient distribution state facilitates the consistent and rapid transport of lithium ions. At room temperature, GCSE exhibits an ionic conductivity of 1.5 × 10−4 S cm−1, with stable constant current cycling of lithium for over 1200 h. Furthermore, CR2032 coin batteries with a LiFePO4 (LFP)|GCSE|Li configuration demonstrate excellent rate performance and cycling stability, yielding a discharge capacity of 120 mA h g−1 at 0.5C and retaining 90 % capacity after 200 cycles at 60 °C. Flexible solid electrolytes with gradient structures offer substantial advantages in dealing with ion conductivity and inhibition of lithium dendrites, thereby expected to propel the practical application of lithium metal batteries.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38154246</pmid><doi>10.1016/j.jcis.2023.12.120</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2024-03, Vol.658, p.836-845
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_2908123884
source ScienceDirect Journals (5 years ago - present)
subjects All-solid-state lithium metal battery
Composite solid electrolytes
Gradient distribution
Li6.4La3Zr1.4Ta0.6O12
Lithium dendrite
title Gradual gradient distribution composite solid electrolyte for solid-state lithium metal batteries with ameliorated electrochemical performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A40%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gradual%20gradient%20distribution%20composite%20solid%20electrolyte%20for%20solid-state%20lithium%20metal%20batteries%20with%20ameliorated%20electrochemical%20performance&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Zhang,%20Xiaobao&rft.date=2024-03-15&rft.volume=658&rft.spage=836&rft.epage=845&rft.pages=836-845&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2023.12.120&rft_dat=%3Cproquest_cross%3E2908123884%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2908123884&rft_id=info:pmid/38154246&rft_els_id=S0021979723024414&rfr_iscdi=true