The Organization of Computations for Uniform Recurrence Equations
A set equations in the quantities a i ( p ), where i = 1, 2, · · ·, m and p ranges over a set R of lattice points in n -space, is called a system of uniform recurrence equations if the following property holds: If p and q are in R and w is an integer n -vector, then a i ( p ) depends directly on a j...
Gespeichert in:
Veröffentlicht in: | Journal of the ACM 1967-07, Vol.14 (3), p.563-590 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 590 |
---|---|
container_issue | 3 |
container_start_page | 563 |
container_title | Journal of the ACM |
container_volume | 14 |
creator | Karp, Richard M Miller, Raymond E Winograd, Shmuel |
description | A set equations in the quantities
a
i
(
p
), where
i
= 1, 2, · · ·,
m
and
p
ranges over a set
R
of lattice points in
n
-space, is called a
system of uniform recurrence equations
if the following property holds: If
p
and
q
are in
R
and
w
is an integer
n
-vector, then
a
i
(
p
) depends directly on
a
j
(
p
-
w
) if and only if
a
i
(
q
) depends directly on
a
j
(
q
-
w
). Finite-difference approximations to systems of partial differential equations typically lead to such recurrence equations. The structure of such a system is specified by a
dependence graph G
having
m
vertices, in which the directed edges are labeled with integer
n
-vectors. For certain choices of the set
R
, necessary and sufficient conditions on
G
are given for the existence of a schedule to compute all the quantities
a
i
(
p
) explicitly from their defining equations. Properties of such schedules, such as the degree to which computation can proceed “in parallel,” are characterized. These characterizations depend on a certain iterative decomposition of a dependence graph into subgraphs. Analogous results concerning implicit schedules are also given. |
doi_str_mv | 10.1145/321406.321418 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29076128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808090578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-b5c5766647d3d5086d75b8a8ed060a8dac851563ed565d7cfb20de773f3c92253</originalsourceid><addsrcrecordid>eNp9kEtLAzEURoMoWKtL91mJm6k3j5uky1LqAwoFacHdkCYZHelM2mRmob_e1nHt6vDB4VscQm4ZTBiT-CA4k6AmJzBzRkYMURda4Ns5GQGALFAydkmucv48TuCgR2S2_gh0ld5tW3_bro4tjRWdx2bfd78z0yomumnrIxr6GlyfUmhdoItDPwjX5KKyuxxu_jgmm8fFev5cLFdPL_PZsnASZFds0aFWSknthUcwymvcGmuCBwXWeOsMMlQieFTotau2HHzQWlTCTTlHMSZ3w-8-xUMfclc2dXZht7NtiH0u-RS0Ytwcxft_RWbAwBRQn9RiUF2KOadQlftUNzZ9lQzKU9NyaFoOTcUP_9doOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808090578</pqid></control><display><type>article</type><title>The Organization of Computations for Uniform Recurrence Equations</title><source>ACM Digital Library Complete</source><creator>Karp, Richard M ; Miller, Raymond E ; Winograd, Shmuel</creator><creatorcontrib>Karp, Richard M ; Miller, Raymond E ; Winograd, Shmuel</creatorcontrib><description>A set equations in the quantities
a
i
(
p
), where
i
= 1, 2, · · ·,
m
and
p
ranges over a set
R
of lattice points in
n
-space, is called a
system of uniform recurrence equations
if the following property holds: If
p
and
q
are in
R
and
w
is an integer
n
-vector, then
a
i
(
p
) depends directly on
a
j
(
p
-
w
) if and only if
a
i
(
q
) depends directly on
a
j
(
q
-
w
). Finite-difference approximations to systems of partial differential equations typically lead to such recurrence equations. The structure of such a system is specified by a
dependence graph G
having
m
vertices, in which the directed edges are labeled with integer
n
-vectors. For certain choices of the set
R
, necessary and sufficient conditions on
G
are given for the existence of a schedule to compute all the quantities
a
i
(
p
) explicitly from their defining equations. Properties of such schedules, such as the degree to which computation can proceed “in parallel,” are characterized. These characterizations depend on a certain iterative decomposition of a dependence graph into subgraphs. Analogous results concerning implicit schedules are also given.</description><identifier>ISSN: 0004-5411</identifier><identifier>EISSN: 1557-735X</identifier><identifier>DOI: 10.1145/321406.321418</identifier><language>eng</language><subject>Approximation ; Computation ; Finite difference method ; Graph theory ; Graphs ; Integers ; Mathematical analysis ; Schedules</subject><ispartof>Journal of the ACM, 1967-07, Vol.14 (3), p.563-590</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-b5c5766647d3d5086d75b8a8ed060a8dac851563ed565d7cfb20de773f3c92253</citedby><cites>FETCH-LOGICAL-c404t-b5c5766647d3d5086d75b8a8ed060a8dac851563ed565d7cfb20de773f3c92253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Karp, Richard M</creatorcontrib><creatorcontrib>Miller, Raymond E</creatorcontrib><creatorcontrib>Winograd, Shmuel</creatorcontrib><title>The Organization of Computations for Uniform Recurrence Equations</title><title>Journal of the ACM</title><description>A set equations in the quantities
a
i
(
p
), where
i
= 1, 2, · · ·,
m
and
p
ranges over a set
R
of lattice points in
n
-space, is called a
system of uniform recurrence equations
if the following property holds: If
p
and
q
are in
R
and
w
is an integer
n
-vector, then
a
i
(
p
) depends directly on
a
j
(
p
-
w
) if and only if
a
i
(
q
) depends directly on
a
j
(
q
-
w
). Finite-difference approximations to systems of partial differential equations typically lead to such recurrence equations. The structure of such a system is specified by a
dependence graph G
having
m
vertices, in which the directed edges are labeled with integer
n
-vectors. For certain choices of the set
R
, necessary and sufficient conditions on
G
are given for the existence of a schedule to compute all the quantities
a
i
(
p
) explicitly from their defining equations. Properties of such schedules, such as the degree to which computation can proceed “in parallel,” are characterized. These characterizations depend on a certain iterative decomposition of a dependence graph into subgraphs. Analogous results concerning implicit schedules are also given.</description><subject>Approximation</subject><subject>Computation</subject><subject>Finite difference method</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Integers</subject><subject>Mathematical analysis</subject><subject>Schedules</subject><issn>0004-5411</issn><issn>1557-735X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1967</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEURoMoWKtL91mJm6k3j5uky1LqAwoFacHdkCYZHelM2mRmob_e1nHt6vDB4VscQm4ZTBiT-CA4k6AmJzBzRkYMURda4Ns5GQGALFAydkmucv48TuCgR2S2_gh0ld5tW3_bro4tjRWdx2bfd78z0yomumnrIxr6GlyfUmhdoItDPwjX5KKyuxxu_jgmm8fFev5cLFdPL_PZsnASZFds0aFWSknthUcwymvcGmuCBwXWeOsMMlQieFTotau2HHzQWlTCTTlHMSZ3w-8-xUMfclc2dXZht7NtiH0u-RS0Ytwcxft_RWbAwBRQn9RiUF2KOadQlftUNzZ9lQzKU9NyaFoOTcUP_9doOA</recordid><startdate>19670701</startdate><enddate>19670701</enddate><creator>Karp, Richard M</creator><creator>Miller, Raymond E</creator><creator>Winograd, Shmuel</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19670701</creationdate><title>The Organization of Computations for Uniform Recurrence Equations</title><author>Karp, Richard M ; Miller, Raymond E ; Winograd, Shmuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-b5c5766647d3d5086d75b8a8ed060a8dac851563ed565d7cfb20de773f3c92253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1967</creationdate><topic>Approximation</topic><topic>Computation</topic><topic>Finite difference method</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Integers</topic><topic>Mathematical analysis</topic><topic>Schedules</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karp, Richard M</creatorcontrib><creatorcontrib>Miller, Raymond E</creatorcontrib><creatorcontrib>Winograd, Shmuel</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the ACM</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karp, Richard M</au><au>Miller, Raymond E</au><au>Winograd, Shmuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Organization of Computations for Uniform Recurrence Equations</atitle><jtitle>Journal of the ACM</jtitle><date>1967-07-01</date><risdate>1967</risdate><volume>14</volume><issue>3</issue><spage>563</spage><epage>590</epage><pages>563-590</pages><issn>0004-5411</issn><eissn>1557-735X</eissn><abstract>A set equations in the quantities
a
i
(
p
), where
i
= 1, 2, · · ·,
m
and
p
ranges over a set
R
of lattice points in
n
-space, is called a
system of uniform recurrence equations
if the following property holds: If
p
and
q
are in
R
and
w
is an integer
n
-vector, then
a
i
(
p
) depends directly on
a
j
(
p
-
w
) if and only if
a
i
(
q
) depends directly on
a
j
(
q
-
w
). Finite-difference approximations to systems of partial differential equations typically lead to such recurrence equations. The structure of such a system is specified by a
dependence graph G
having
m
vertices, in which the directed edges are labeled with integer
n
-vectors. For certain choices of the set
R
, necessary and sufficient conditions on
G
are given for the existence of a schedule to compute all the quantities
a
i
(
p
) explicitly from their defining equations. Properties of such schedules, such as the degree to which computation can proceed “in parallel,” are characterized. These characterizations depend on a certain iterative decomposition of a dependence graph into subgraphs. Analogous results concerning implicit schedules are also given.</abstract><doi>10.1145/321406.321418</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-5411 |
ispartof | Journal of the ACM, 1967-07, Vol.14 (3), p.563-590 |
issn | 0004-5411 1557-735X |
language | eng |
recordid | cdi_proquest_miscellaneous_29076128 |
source | ACM Digital Library Complete |
subjects | Approximation Computation Finite difference method Graph theory Graphs Integers Mathematical analysis Schedules |
title | The Organization of Computations for Uniform Recurrence Equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A18%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Organization%20of%20Computations%20for%20Uniform%20Recurrence%20Equations&rft.jtitle=Journal%20of%20the%20ACM&rft.au=Karp,%20Richard%20M&rft.date=1967-07-01&rft.volume=14&rft.issue=3&rft.spage=563&rft.epage=590&rft.pages=563-590&rft.issn=0004-5411&rft.eissn=1557-735X&rft_id=info:doi/10.1145/321406.321418&rft_dat=%3Cproquest_cross%3E1808090578%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808090578&rft_id=info:pmid/&rfr_iscdi=true |