The Organization of Computations for Uniform Recurrence Equations

A set equations in the quantities a i ( p ), where i = 1, 2, · · ·, m and p ranges over a set R of lattice points in n -space, is called a system of uniform recurrence equations if the following property holds: If p and q are in R and w is an integer n -vector, then a i ( p ) depends directly on a j...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the ACM 1967-07, Vol.14 (3), p.563-590
Hauptverfasser: Karp, Richard M, Miller, Raymond E, Winograd, Shmuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 590
container_issue 3
container_start_page 563
container_title Journal of the ACM
container_volume 14
creator Karp, Richard M
Miller, Raymond E
Winograd, Shmuel
description A set equations in the quantities a i ( p ), where i = 1, 2, · · ·, m and p ranges over a set R of lattice points in n -space, is called a system of uniform recurrence equations if the following property holds: If p and q are in R and w is an integer n -vector, then a i ( p ) depends directly on a j ( p - w ) if and only if a i ( q ) depends directly on a j ( q - w ). Finite-difference approximations to systems of partial differential equations typically lead to such recurrence equations. The structure of such a system is specified by a dependence graph G having m vertices, in which the directed edges are labeled with integer n -vectors. For certain choices of the set R , necessary and sufficient conditions on G are given for the existence of a schedule to compute all the quantities a i ( p ) explicitly from their defining equations. Properties of such schedules, such as the degree to which computation can proceed “in parallel,” are characterized. These characterizations depend on a certain iterative decomposition of a dependence graph into subgraphs. Analogous results concerning implicit schedules are also given.
doi_str_mv 10.1145/321406.321418
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29076128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808090578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-b5c5766647d3d5086d75b8a8ed060a8dac851563ed565d7cfb20de773f3c92253</originalsourceid><addsrcrecordid>eNp9kEtLAzEURoMoWKtL91mJm6k3j5uky1LqAwoFacHdkCYZHelM2mRmob_e1nHt6vDB4VscQm4ZTBiT-CA4k6AmJzBzRkYMURda4Ns5GQGALFAydkmucv48TuCgR2S2_gh0ld5tW3_bro4tjRWdx2bfd78z0yomumnrIxr6GlyfUmhdoItDPwjX5KKyuxxu_jgmm8fFev5cLFdPL_PZsnASZFds0aFWSknthUcwymvcGmuCBwXWeOsMMlQieFTotau2HHzQWlTCTTlHMSZ3w-8-xUMfclc2dXZht7NtiH0u-RS0Ytwcxft_RWbAwBRQn9RiUF2KOadQlftUNzZ9lQzKU9NyaFoOTcUP_9doOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808090578</pqid></control><display><type>article</type><title>The Organization of Computations for Uniform Recurrence Equations</title><source>ACM Digital Library Complete</source><creator>Karp, Richard M ; Miller, Raymond E ; Winograd, Shmuel</creator><creatorcontrib>Karp, Richard M ; Miller, Raymond E ; Winograd, Shmuel</creatorcontrib><description>A set equations in the quantities a i ( p ), where i = 1, 2, · · ·, m and p ranges over a set R of lattice points in n -space, is called a system of uniform recurrence equations if the following property holds: If p and q are in R and w is an integer n -vector, then a i ( p ) depends directly on a j ( p - w ) if and only if a i ( q ) depends directly on a j ( q - w ). Finite-difference approximations to systems of partial differential equations typically lead to such recurrence equations. The structure of such a system is specified by a dependence graph G having m vertices, in which the directed edges are labeled with integer n -vectors. For certain choices of the set R , necessary and sufficient conditions on G are given for the existence of a schedule to compute all the quantities a i ( p ) explicitly from their defining equations. Properties of such schedules, such as the degree to which computation can proceed “in parallel,” are characterized. These characterizations depend on a certain iterative decomposition of a dependence graph into subgraphs. Analogous results concerning implicit schedules are also given.</description><identifier>ISSN: 0004-5411</identifier><identifier>EISSN: 1557-735X</identifier><identifier>DOI: 10.1145/321406.321418</identifier><language>eng</language><subject>Approximation ; Computation ; Finite difference method ; Graph theory ; Graphs ; Integers ; Mathematical analysis ; Schedules</subject><ispartof>Journal of the ACM, 1967-07, Vol.14 (3), p.563-590</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-b5c5766647d3d5086d75b8a8ed060a8dac851563ed565d7cfb20de773f3c92253</citedby><cites>FETCH-LOGICAL-c404t-b5c5766647d3d5086d75b8a8ed060a8dac851563ed565d7cfb20de773f3c92253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Karp, Richard M</creatorcontrib><creatorcontrib>Miller, Raymond E</creatorcontrib><creatorcontrib>Winograd, Shmuel</creatorcontrib><title>The Organization of Computations for Uniform Recurrence Equations</title><title>Journal of the ACM</title><description>A set equations in the quantities a i ( p ), where i = 1, 2, · · ·, m and p ranges over a set R of lattice points in n -space, is called a system of uniform recurrence equations if the following property holds: If p and q are in R and w is an integer n -vector, then a i ( p ) depends directly on a j ( p - w ) if and only if a i ( q ) depends directly on a j ( q - w ). Finite-difference approximations to systems of partial differential equations typically lead to such recurrence equations. The structure of such a system is specified by a dependence graph G having m vertices, in which the directed edges are labeled with integer n -vectors. For certain choices of the set R , necessary and sufficient conditions on G are given for the existence of a schedule to compute all the quantities a i ( p ) explicitly from their defining equations. Properties of such schedules, such as the degree to which computation can proceed “in parallel,” are characterized. These characterizations depend on a certain iterative decomposition of a dependence graph into subgraphs. Analogous results concerning implicit schedules are also given.</description><subject>Approximation</subject><subject>Computation</subject><subject>Finite difference method</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Integers</subject><subject>Mathematical analysis</subject><subject>Schedules</subject><issn>0004-5411</issn><issn>1557-735X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1967</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEURoMoWKtL91mJm6k3j5uky1LqAwoFacHdkCYZHelM2mRmob_e1nHt6vDB4VscQm4ZTBiT-CA4k6AmJzBzRkYMURda4Ns5GQGALFAydkmucv48TuCgR2S2_gh0ld5tW3_bro4tjRWdx2bfd78z0yomumnrIxr6GlyfUmhdoItDPwjX5KKyuxxu_jgmm8fFev5cLFdPL_PZsnASZFds0aFWSknthUcwymvcGmuCBwXWeOsMMlQieFTotau2HHzQWlTCTTlHMSZ3w-8-xUMfclc2dXZht7NtiH0u-RS0Ytwcxft_RWbAwBRQn9RiUF2KOadQlftUNzZ9lQzKU9NyaFoOTcUP_9doOA</recordid><startdate>19670701</startdate><enddate>19670701</enddate><creator>Karp, Richard M</creator><creator>Miller, Raymond E</creator><creator>Winograd, Shmuel</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19670701</creationdate><title>The Organization of Computations for Uniform Recurrence Equations</title><author>Karp, Richard M ; Miller, Raymond E ; Winograd, Shmuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-b5c5766647d3d5086d75b8a8ed060a8dac851563ed565d7cfb20de773f3c92253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1967</creationdate><topic>Approximation</topic><topic>Computation</topic><topic>Finite difference method</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Integers</topic><topic>Mathematical analysis</topic><topic>Schedules</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karp, Richard M</creatorcontrib><creatorcontrib>Miller, Raymond E</creatorcontrib><creatorcontrib>Winograd, Shmuel</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the ACM</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karp, Richard M</au><au>Miller, Raymond E</au><au>Winograd, Shmuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Organization of Computations for Uniform Recurrence Equations</atitle><jtitle>Journal of the ACM</jtitle><date>1967-07-01</date><risdate>1967</risdate><volume>14</volume><issue>3</issue><spage>563</spage><epage>590</epage><pages>563-590</pages><issn>0004-5411</issn><eissn>1557-735X</eissn><abstract>A set equations in the quantities a i ( p ), where i = 1, 2, · · ·, m and p ranges over a set R of lattice points in n -space, is called a system of uniform recurrence equations if the following property holds: If p and q are in R and w is an integer n -vector, then a i ( p ) depends directly on a j ( p - w ) if and only if a i ( q ) depends directly on a j ( q - w ). Finite-difference approximations to systems of partial differential equations typically lead to such recurrence equations. The structure of such a system is specified by a dependence graph G having m vertices, in which the directed edges are labeled with integer n -vectors. For certain choices of the set R , necessary and sufficient conditions on G are given for the existence of a schedule to compute all the quantities a i ( p ) explicitly from their defining equations. Properties of such schedules, such as the degree to which computation can proceed “in parallel,” are characterized. These characterizations depend on a certain iterative decomposition of a dependence graph into subgraphs. Analogous results concerning implicit schedules are also given.</abstract><doi>10.1145/321406.321418</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-5411
ispartof Journal of the ACM, 1967-07, Vol.14 (3), p.563-590
issn 0004-5411
1557-735X
language eng
recordid cdi_proquest_miscellaneous_29076128
source ACM Digital Library Complete
subjects Approximation
Computation
Finite difference method
Graph theory
Graphs
Integers
Mathematical analysis
Schedules
title The Organization of Computations for Uniform Recurrence Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A18%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Organization%20of%20Computations%20for%20Uniform%20Recurrence%20Equations&rft.jtitle=Journal%20of%20the%20ACM&rft.au=Karp,%20Richard%20M&rft.date=1967-07-01&rft.volume=14&rft.issue=3&rft.spage=563&rft.epage=590&rft.pages=563-590&rft.issn=0004-5411&rft.eissn=1557-735X&rft_id=info:doi/10.1145/321406.321418&rft_dat=%3Cproquest_cross%3E1808090578%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808090578&rft_id=info:pmid/&rfr_iscdi=true