Concentration of clarified pool by single‐pass tangential flow filtration to improve productivity of protein A capture step: Impact of clarification strategies
Protein A capture chromatography remains a high‐cost and relatively low‐productivity step for downstream processing of monoclonal antibodies. As bioprocessing transitions toward intensified processes, maximizing the efficiency of individual steps is key to achieving economic targets. This study was...
Gespeichert in:
Veröffentlicht in: | Biotechnology and bioengineering 2024-03, Vol.121 (3), p.1090-1101 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1101 |
---|---|
container_issue | 3 |
container_start_page | 1090 |
container_title | Biotechnology and bioengineering |
container_volume | 121 |
creator | Rahane, Santosh B. Gupta, Akshat Szymanski, Philip Kinzlmaier, Dana McGee, Patrick Goodrich, Elizabeth |
description | Protein A capture chromatography remains a high‐cost and relatively low‐productivity step for downstream processing of monoclonal antibodies. As bioprocessing transitions toward intensified processes, maximizing the efficiency of individual steps is key to achieving economic targets. This study was performed to assess the impact of inline concentration of clarified cell culture fluid (CCF), using single‐pass tangential flow filtration, on protein A chromatography purification productivity. CCF with varying levels of impurities and turbidity were obtained dependent upon the clarification method. These CCFs were concentrated and processed over a protein A capture step. Productivity increases of 1.8‐ to 2.6‐fold were achieved as compared to a protein A capture step with no CCF concentration. Achieving such targeted improvements requires careful consideration of the multiple components in the clarification strategy before implementation. |
doi_str_mv | 10.1002/bit.28634 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2907197307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2907197307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3134-f1b342118e47e03224b1642a6899d2dcf9ed283409bd533f96193ecaa50442c63</originalsourceid><addsrcrecordid>eNp1kc9q3DAQh0VJabZpD32BIsilOTjRv7Wt3NIlTRcCvaRnI8ujRUG2XElO2Fseoa_QV-uTVI6TUgK9jBj45ptBP4Q-UHJKCWFnrU2nrC65eIVWlMiqIEySA7QihJQFX0t2iN7GeJvbqi7LN-iQ13RNJWEr9GvjBw1DCipZP2BvsHYqWGOhw6P3Drd7HO2wc_D74eeoYsRJDbs8YJXDxvl7bKx7nk4e234M_g5wrt2kk72zaT9bc5_ADvgCazWmKQCOCcZzvO1HpdM_e_WiirMTdhbiO_TaKBfh_dN7hL5_ubzZfC2uv11tNxfXheaUi8LQlgtGaQ2iAsIZEy0tBVNlLWXHOm0kdKzmgsi2W3NuZEklB63UmgjBdMmP0KfFm0_9MUFMTW-jBufUAH6KTf7SisqKkyqjxy_QWz-FIV-XKVbT2TgLTxZKBx9jANOMwfYq7BtKmjm3JufWPOaW2Y9PxqntoftLPgeVgbMFuLcO9v83NZ-3N4vyD1wHpSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2928104426</pqid></control><display><type>article</type><title>Concentration of clarified pool by single‐pass tangential flow filtration to improve productivity of protein A capture step: Impact of clarification strategies</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Rahane, Santosh B. ; Gupta, Akshat ; Szymanski, Philip ; Kinzlmaier, Dana ; McGee, Patrick ; Goodrich, Elizabeth</creator><creatorcontrib>Rahane, Santosh B. ; Gupta, Akshat ; Szymanski, Philip ; Kinzlmaier, Dana ; McGee, Patrick ; Goodrich, Elizabeth</creatorcontrib><description>Protein A capture chromatography remains a high‐cost and relatively low‐productivity step for downstream processing of monoclonal antibodies. As bioprocessing transitions toward intensified processes, maximizing the efficiency of individual steps is key to achieving economic targets. This study was performed to assess the impact of inline concentration of clarified cell culture fluid (CCF), using single‐pass tangential flow filtration, on protein A chromatography purification productivity. CCF with varying levels of impurities and turbidity were obtained dependent upon the clarification method. These CCFs were concentrated and processed over a protein A capture step. Productivity increases of 1.8‐ to 2.6‐fold were achieved as compared to a protein A capture step with no CCF concentration. Achieving such targeted improvements requires careful consideration of the multiple components in the clarification strategy before implementation.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.28634</identifier><identifier>PMID: 38151902</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Animals ; Antibodies, Monoclonal - chemistry ; Bioprocessing ; Cell culture ; Cell Culture Techniques - methods ; CHO Cells ; Chromatography ; clarification ; Cricetinae ; Cricetulus ; Filtration ; Filtration - methods ; flocculation and precipitation ; harvest concentration ; Impact analysis ; Impurities ; Monoclonal antibodies ; process intensification ; Productivity ; Protein A ; protein A capture productivity ; Protein folding ; Protein purification ; Proteins ; single‐pass tangential flow filtration ; Staphylococcal Protein A - chemistry ; Turbidity</subject><ispartof>Biotechnology and bioengineering, 2024-03, Vol.121 (3), p.1090-1101</ispartof><rights>2023 Wiley Periodicals LLC.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3134-f1b342118e47e03224b1642a6899d2dcf9ed283409bd533f96193ecaa50442c63</cites><orcidid>0009-0003-5558-9182</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.28634$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.28634$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38151902$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rahane, Santosh B.</creatorcontrib><creatorcontrib>Gupta, Akshat</creatorcontrib><creatorcontrib>Szymanski, Philip</creatorcontrib><creatorcontrib>Kinzlmaier, Dana</creatorcontrib><creatorcontrib>McGee, Patrick</creatorcontrib><creatorcontrib>Goodrich, Elizabeth</creatorcontrib><title>Concentration of clarified pool by single‐pass tangential flow filtration to improve productivity of protein A capture step: Impact of clarification strategies</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol Bioeng</addtitle><description>Protein A capture chromatography remains a high‐cost and relatively low‐productivity step for downstream processing of monoclonal antibodies. As bioprocessing transitions toward intensified processes, maximizing the efficiency of individual steps is key to achieving economic targets. This study was performed to assess the impact of inline concentration of clarified cell culture fluid (CCF), using single‐pass tangential flow filtration, on protein A chromatography purification productivity. CCF with varying levels of impurities and turbidity were obtained dependent upon the clarification method. These CCFs were concentrated and processed over a protein A capture step. Productivity increases of 1.8‐ to 2.6‐fold were achieved as compared to a protein A capture step with no CCF concentration. Achieving such targeted improvements requires careful consideration of the multiple components in the clarification strategy before implementation.</description><subject>Animals</subject><subject>Antibodies, Monoclonal - chemistry</subject><subject>Bioprocessing</subject><subject>Cell culture</subject><subject>Cell Culture Techniques - methods</subject><subject>CHO Cells</subject><subject>Chromatography</subject><subject>clarification</subject><subject>Cricetinae</subject><subject>Cricetulus</subject><subject>Filtration</subject><subject>Filtration - methods</subject><subject>flocculation and precipitation</subject><subject>harvest concentration</subject><subject>Impact analysis</subject><subject>Impurities</subject><subject>Monoclonal antibodies</subject><subject>process intensification</subject><subject>Productivity</subject><subject>Protein A</subject><subject>protein A capture productivity</subject><subject>Protein folding</subject><subject>Protein purification</subject><subject>Proteins</subject><subject>single‐pass tangential flow filtration</subject><subject>Staphylococcal Protein A - chemistry</subject><subject>Turbidity</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kc9q3DAQh0VJabZpD32BIsilOTjRv7Wt3NIlTRcCvaRnI8ujRUG2XElO2Fseoa_QV-uTVI6TUgK9jBj45ptBP4Q-UHJKCWFnrU2nrC65eIVWlMiqIEySA7QihJQFX0t2iN7GeJvbqi7LN-iQ13RNJWEr9GvjBw1DCipZP2BvsHYqWGOhw6P3Drd7HO2wc_D74eeoYsRJDbs8YJXDxvl7bKx7nk4e234M_g5wrt2kk72zaT9bc5_ADvgCazWmKQCOCcZzvO1HpdM_e_WiirMTdhbiO_TaKBfh_dN7hL5_ubzZfC2uv11tNxfXheaUi8LQlgtGaQ2iAsIZEy0tBVNlLWXHOm0kdKzmgsi2W3NuZEklB63UmgjBdMmP0KfFm0_9MUFMTW-jBufUAH6KTf7SisqKkyqjxy_QWz-FIV-XKVbT2TgLTxZKBx9jANOMwfYq7BtKmjm3JufWPOaW2Y9PxqntoftLPgeVgbMFuLcO9v83NZ-3N4vyD1wHpSg</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Rahane, Santosh B.</creator><creator>Gupta, Akshat</creator><creator>Szymanski, Philip</creator><creator>Kinzlmaier, Dana</creator><creator>McGee, Patrick</creator><creator>Goodrich, Elizabeth</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0003-5558-9182</orcidid></search><sort><creationdate>202403</creationdate><title>Concentration of clarified pool by single‐pass tangential flow filtration to improve productivity of protein A capture step: Impact of clarification strategies</title><author>Rahane, Santosh B. ; Gupta, Akshat ; Szymanski, Philip ; Kinzlmaier, Dana ; McGee, Patrick ; Goodrich, Elizabeth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3134-f1b342118e47e03224b1642a6899d2dcf9ed283409bd533f96193ecaa50442c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Antibodies, Monoclonal - chemistry</topic><topic>Bioprocessing</topic><topic>Cell culture</topic><topic>Cell Culture Techniques - methods</topic><topic>CHO Cells</topic><topic>Chromatography</topic><topic>clarification</topic><topic>Cricetinae</topic><topic>Cricetulus</topic><topic>Filtration</topic><topic>Filtration - methods</topic><topic>flocculation and precipitation</topic><topic>harvest concentration</topic><topic>Impact analysis</topic><topic>Impurities</topic><topic>Monoclonal antibodies</topic><topic>process intensification</topic><topic>Productivity</topic><topic>Protein A</topic><topic>protein A capture productivity</topic><topic>Protein folding</topic><topic>Protein purification</topic><topic>Proteins</topic><topic>single‐pass tangential flow filtration</topic><topic>Staphylococcal Protein A - chemistry</topic><topic>Turbidity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahane, Santosh B.</creatorcontrib><creatorcontrib>Gupta, Akshat</creatorcontrib><creatorcontrib>Szymanski, Philip</creatorcontrib><creatorcontrib>Kinzlmaier, Dana</creatorcontrib><creatorcontrib>McGee, Patrick</creatorcontrib><creatorcontrib>Goodrich, Elizabeth</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahane, Santosh B.</au><au>Gupta, Akshat</au><au>Szymanski, Philip</au><au>Kinzlmaier, Dana</au><au>McGee, Patrick</au><au>Goodrich, Elizabeth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Concentration of clarified pool by single‐pass tangential flow filtration to improve productivity of protein A capture step: Impact of clarification strategies</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol Bioeng</addtitle><date>2024-03</date><risdate>2024</risdate><volume>121</volume><issue>3</issue><spage>1090</spage><epage>1101</epage><pages>1090-1101</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><abstract>Protein A capture chromatography remains a high‐cost and relatively low‐productivity step for downstream processing of monoclonal antibodies. As bioprocessing transitions toward intensified processes, maximizing the efficiency of individual steps is key to achieving economic targets. This study was performed to assess the impact of inline concentration of clarified cell culture fluid (CCF), using single‐pass tangential flow filtration, on protein A chromatography purification productivity. CCF with varying levels of impurities and turbidity were obtained dependent upon the clarification method. These CCFs were concentrated and processed over a protein A capture step. Productivity increases of 1.8‐ to 2.6‐fold were achieved as compared to a protein A capture step with no CCF concentration. Achieving such targeted improvements requires careful consideration of the multiple components in the clarification strategy before implementation.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38151902</pmid><doi>10.1002/bit.28634</doi><tpages>12</tpages><orcidid>https://orcid.org/0009-0003-5558-9182</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3592 |
ispartof | Biotechnology and bioengineering, 2024-03, Vol.121 (3), p.1090-1101 |
issn | 0006-3592 1097-0290 |
language | eng |
recordid | cdi_proquest_miscellaneous_2907197307 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animals Antibodies, Monoclonal - chemistry Bioprocessing Cell culture Cell Culture Techniques - methods CHO Cells Chromatography clarification Cricetinae Cricetulus Filtration Filtration - methods flocculation and precipitation harvest concentration Impact analysis Impurities Monoclonal antibodies process intensification Productivity Protein A protein A capture productivity Protein folding Protein purification Proteins single‐pass tangential flow filtration Staphylococcal Protein A - chemistry Turbidity |
title | Concentration of clarified pool by single‐pass tangential flow filtration to improve productivity of protein A capture step: Impact of clarification strategies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T02%3A38%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Concentration%20of%20clarified%20pool%20by%20single%E2%80%90pass%20tangential%20flow%20filtration%20to%20improve%20productivity%20of%20protein%20A%20capture%20step:%20Impact%20of%20clarification%20strategies&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Rahane,%20Santosh%20B.&rft.date=2024-03&rft.volume=121&rft.issue=3&rft.spage=1090&rft.epage=1101&rft.pages=1090-1101&rft.issn=0006-3592&rft.eissn=1097-0290&rft_id=info:doi/10.1002/bit.28634&rft_dat=%3Cproquest_cross%3E2907197307%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2928104426&rft_id=info:pmid/38151902&rfr_iscdi=true |