Concentration of clarified pool by single‐pass tangential flow filtration to improve productivity of protein A capture step: Impact of clarification strategies

Protein A capture chromatography remains a high‐cost and relatively low‐productivity step for downstream processing of monoclonal antibodies. As bioprocessing transitions toward intensified processes, maximizing the efficiency of individual steps is key to achieving economic targets. This study was...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 2024-03, Vol.121 (3), p.1090-1101
Hauptverfasser: Rahane, Santosh B., Gupta, Akshat, Szymanski, Philip, Kinzlmaier, Dana, McGee, Patrick, Goodrich, Elizabeth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1101
container_issue 3
container_start_page 1090
container_title Biotechnology and bioengineering
container_volume 121
creator Rahane, Santosh B.
Gupta, Akshat
Szymanski, Philip
Kinzlmaier, Dana
McGee, Patrick
Goodrich, Elizabeth
description Protein A capture chromatography remains a high‐cost and relatively low‐productivity step for downstream processing of monoclonal antibodies. As bioprocessing transitions toward intensified processes, maximizing the efficiency of individual steps is key to achieving economic targets. This study was performed to assess the impact of inline concentration of clarified cell culture fluid (CCF), using single‐pass tangential flow filtration, on protein A chromatography purification productivity. CCF with varying levels of impurities and turbidity were obtained dependent upon the clarification method. These CCFs were concentrated and processed over a protein A capture step. Productivity increases of 1.8‐ to 2.6‐fold were achieved as compared to a protein A capture step with no CCF concentration. Achieving such targeted improvements requires careful consideration of the multiple components in the clarification strategy before implementation.
doi_str_mv 10.1002/bit.28634
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2907197307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2907197307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3134-f1b342118e47e03224b1642a6899d2dcf9ed283409bd533f96193ecaa50442c63</originalsourceid><addsrcrecordid>eNp1kc9q3DAQh0VJabZpD32BIsilOTjRv7Wt3NIlTRcCvaRnI8ujRUG2XElO2Fseoa_QV-uTVI6TUgK9jBj45ptBP4Q-UHJKCWFnrU2nrC65eIVWlMiqIEySA7QihJQFX0t2iN7GeJvbqi7LN-iQ13RNJWEr9GvjBw1DCipZP2BvsHYqWGOhw6P3Drd7HO2wc_D74eeoYsRJDbs8YJXDxvl7bKx7nk4e234M_g5wrt2kk72zaT9bc5_ADvgCazWmKQCOCcZzvO1HpdM_e_WiirMTdhbiO_TaKBfh_dN7hL5_ubzZfC2uv11tNxfXheaUi8LQlgtGaQ2iAsIZEy0tBVNlLWXHOm0kdKzmgsi2W3NuZEklB63UmgjBdMmP0KfFm0_9MUFMTW-jBufUAH6KTf7SisqKkyqjxy_QWz-FIV-XKVbT2TgLTxZKBx9jANOMwfYq7BtKmjm3JufWPOaW2Y9PxqntoftLPgeVgbMFuLcO9v83NZ-3N4vyD1wHpSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2928104426</pqid></control><display><type>article</type><title>Concentration of clarified pool by single‐pass tangential flow filtration to improve productivity of protein A capture step: Impact of clarification strategies</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Rahane, Santosh B. ; Gupta, Akshat ; Szymanski, Philip ; Kinzlmaier, Dana ; McGee, Patrick ; Goodrich, Elizabeth</creator><creatorcontrib>Rahane, Santosh B. ; Gupta, Akshat ; Szymanski, Philip ; Kinzlmaier, Dana ; McGee, Patrick ; Goodrich, Elizabeth</creatorcontrib><description>Protein A capture chromatography remains a high‐cost and relatively low‐productivity step for downstream processing of monoclonal antibodies. As bioprocessing transitions toward intensified processes, maximizing the efficiency of individual steps is key to achieving economic targets. This study was performed to assess the impact of inline concentration of clarified cell culture fluid (CCF), using single‐pass tangential flow filtration, on protein A chromatography purification productivity. CCF with varying levels of impurities and turbidity were obtained dependent upon the clarification method. These CCFs were concentrated and processed over a protein A capture step. Productivity increases of 1.8‐ to 2.6‐fold were achieved as compared to a protein A capture step with no CCF concentration. Achieving such targeted improvements requires careful consideration of the multiple components in the clarification strategy before implementation.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.28634</identifier><identifier>PMID: 38151902</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Animals ; Antibodies, Monoclonal - chemistry ; Bioprocessing ; Cell culture ; Cell Culture Techniques - methods ; CHO Cells ; Chromatography ; clarification ; Cricetinae ; Cricetulus ; Filtration ; Filtration - methods ; flocculation and precipitation ; harvest concentration ; Impact analysis ; Impurities ; Monoclonal antibodies ; process intensification ; Productivity ; Protein A ; protein A capture productivity ; Protein folding ; Protein purification ; Proteins ; single‐pass tangential flow filtration ; Staphylococcal Protein A - chemistry ; Turbidity</subject><ispartof>Biotechnology and bioengineering, 2024-03, Vol.121 (3), p.1090-1101</ispartof><rights>2023 Wiley Periodicals LLC.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3134-f1b342118e47e03224b1642a6899d2dcf9ed283409bd533f96193ecaa50442c63</cites><orcidid>0009-0003-5558-9182</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.28634$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.28634$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38151902$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rahane, Santosh B.</creatorcontrib><creatorcontrib>Gupta, Akshat</creatorcontrib><creatorcontrib>Szymanski, Philip</creatorcontrib><creatorcontrib>Kinzlmaier, Dana</creatorcontrib><creatorcontrib>McGee, Patrick</creatorcontrib><creatorcontrib>Goodrich, Elizabeth</creatorcontrib><title>Concentration of clarified pool by single‐pass tangential flow filtration to improve productivity of protein A capture step: Impact of clarification strategies</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol Bioeng</addtitle><description>Protein A capture chromatography remains a high‐cost and relatively low‐productivity step for downstream processing of monoclonal antibodies. As bioprocessing transitions toward intensified processes, maximizing the efficiency of individual steps is key to achieving economic targets. This study was performed to assess the impact of inline concentration of clarified cell culture fluid (CCF), using single‐pass tangential flow filtration, on protein A chromatography purification productivity. CCF with varying levels of impurities and turbidity were obtained dependent upon the clarification method. These CCFs were concentrated and processed over a protein A capture step. Productivity increases of 1.8‐ to 2.6‐fold were achieved as compared to a protein A capture step with no CCF concentration. Achieving such targeted improvements requires careful consideration of the multiple components in the clarification strategy before implementation.</description><subject>Animals</subject><subject>Antibodies, Monoclonal - chemistry</subject><subject>Bioprocessing</subject><subject>Cell culture</subject><subject>Cell Culture Techniques - methods</subject><subject>CHO Cells</subject><subject>Chromatography</subject><subject>clarification</subject><subject>Cricetinae</subject><subject>Cricetulus</subject><subject>Filtration</subject><subject>Filtration - methods</subject><subject>flocculation and precipitation</subject><subject>harvest concentration</subject><subject>Impact analysis</subject><subject>Impurities</subject><subject>Monoclonal antibodies</subject><subject>process intensification</subject><subject>Productivity</subject><subject>Protein A</subject><subject>protein A capture productivity</subject><subject>Protein folding</subject><subject>Protein purification</subject><subject>Proteins</subject><subject>single‐pass tangential flow filtration</subject><subject>Staphylococcal Protein A - chemistry</subject><subject>Turbidity</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kc9q3DAQh0VJabZpD32BIsilOTjRv7Wt3NIlTRcCvaRnI8ujRUG2XElO2Fseoa_QV-uTVI6TUgK9jBj45ptBP4Q-UHJKCWFnrU2nrC65eIVWlMiqIEySA7QihJQFX0t2iN7GeJvbqi7LN-iQ13RNJWEr9GvjBw1DCipZP2BvsHYqWGOhw6P3Drd7HO2wc_D74eeoYsRJDbs8YJXDxvl7bKx7nk4e234M_g5wrt2kk72zaT9bc5_ADvgCazWmKQCOCcZzvO1HpdM_e_WiirMTdhbiO_TaKBfh_dN7hL5_ubzZfC2uv11tNxfXheaUi8LQlgtGaQ2iAsIZEy0tBVNlLWXHOm0kdKzmgsi2W3NuZEklB63UmgjBdMmP0KfFm0_9MUFMTW-jBufUAH6KTf7SisqKkyqjxy_QWz-FIV-XKVbT2TgLTxZKBx9jANOMwfYq7BtKmjm3JufWPOaW2Y9PxqntoftLPgeVgbMFuLcO9v83NZ-3N4vyD1wHpSg</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Rahane, Santosh B.</creator><creator>Gupta, Akshat</creator><creator>Szymanski, Philip</creator><creator>Kinzlmaier, Dana</creator><creator>McGee, Patrick</creator><creator>Goodrich, Elizabeth</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0003-5558-9182</orcidid></search><sort><creationdate>202403</creationdate><title>Concentration of clarified pool by single‐pass tangential flow filtration to improve productivity of protein A capture step: Impact of clarification strategies</title><author>Rahane, Santosh B. ; Gupta, Akshat ; Szymanski, Philip ; Kinzlmaier, Dana ; McGee, Patrick ; Goodrich, Elizabeth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3134-f1b342118e47e03224b1642a6899d2dcf9ed283409bd533f96193ecaa50442c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Antibodies, Monoclonal - chemistry</topic><topic>Bioprocessing</topic><topic>Cell culture</topic><topic>Cell Culture Techniques - methods</topic><topic>CHO Cells</topic><topic>Chromatography</topic><topic>clarification</topic><topic>Cricetinae</topic><topic>Cricetulus</topic><topic>Filtration</topic><topic>Filtration - methods</topic><topic>flocculation and precipitation</topic><topic>harvest concentration</topic><topic>Impact analysis</topic><topic>Impurities</topic><topic>Monoclonal antibodies</topic><topic>process intensification</topic><topic>Productivity</topic><topic>Protein A</topic><topic>protein A capture productivity</topic><topic>Protein folding</topic><topic>Protein purification</topic><topic>Proteins</topic><topic>single‐pass tangential flow filtration</topic><topic>Staphylococcal Protein A - chemistry</topic><topic>Turbidity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahane, Santosh B.</creatorcontrib><creatorcontrib>Gupta, Akshat</creatorcontrib><creatorcontrib>Szymanski, Philip</creatorcontrib><creatorcontrib>Kinzlmaier, Dana</creatorcontrib><creatorcontrib>McGee, Patrick</creatorcontrib><creatorcontrib>Goodrich, Elizabeth</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahane, Santosh B.</au><au>Gupta, Akshat</au><au>Szymanski, Philip</au><au>Kinzlmaier, Dana</au><au>McGee, Patrick</au><au>Goodrich, Elizabeth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Concentration of clarified pool by single‐pass tangential flow filtration to improve productivity of protein A capture step: Impact of clarification strategies</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol Bioeng</addtitle><date>2024-03</date><risdate>2024</risdate><volume>121</volume><issue>3</issue><spage>1090</spage><epage>1101</epage><pages>1090-1101</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><abstract>Protein A capture chromatography remains a high‐cost and relatively low‐productivity step for downstream processing of monoclonal antibodies. As bioprocessing transitions toward intensified processes, maximizing the efficiency of individual steps is key to achieving economic targets. This study was performed to assess the impact of inline concentration of clarified cell culture fluid (CCF), using single‐pass tangential flow filtration, on protein A chromatography purification productivity. CCF with varying levels of impurities and turbidity were obtained dependent upon the clarification method. These CCFs were concentrated and processed over a protein A capture step. Productivity increases of 1.8‐ to 2.6‐fold were achieved as compared to a protein A capture step with no CCF concentration. Achieving such targeted improvements requires careful consideration of the multiple components in the clarification strategy before implementation.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38151902</pmid><doi>10.1002/bit.28634</doi><tpages>12</tpages><orcidid>https://orcid.org/0009-0003-5558-9182</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2024-03, Vol.121 (3), p.1090-1101
issn 0006-3592
1097-0290
language eng
recordid cdi_proquest_miscellaneous_2907197307
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Antibodies, Monoclonal - chemistry
Bioprocessing
Cell culture
Cell Culture Techniques - methods
CHO Cells
Chromatography
clarification
Cricetinae
Cricetulus
Filtration
Filtration - methods
flocculation and precipitation
harvest concentration
Impact analysis
Impurities
Monoclonal antibodies
process intensification
Productivity
Protein A
protein A capture productivity
Protein folding
Protein purification
Proteins
single‐pass tangential flow filtration
Staphylococcal Protein A - chemistry
Turbidity
title Concentration of clarified pool by single‐pass tangential flow filtration to improve productivity of protein A capture step: Impact of clarification strategies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T02%3A38%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Concentration%20of%20clarified%20pool%20by%20single%E2%80%90pass%20tangential%20flow%20filtration%20to%20improve%20productivity%20of%20protein%20A%20capture%20step:%20Impact%20of%20clarification%20strategies&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Rahane,%20Santosh%20B.&rft.date=2024-03&rft.volume=121&rft.issue=3&rft.spage=1090&rft.epage=1101&rft.pages=1090-1101&rft.issn=0006-3592&rft.eissn=1097-0290&rft_id=info:doi/10.1002/bit.28634&rft_dat=%3Cproquest_cross%3E2907197307%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2928104426&rft_id=info:pmid/38151902&rfr_iscdi=true