Chiral Au–Pd Alloy Nanorods with Tunable Optical Chirality and Catalytically Active Surfaces

Integrating the plasmonic chirality with excellent catalytic activities in plasmonic hybrid nanostructures provides a promising strategy to realize the chiral nanocatalysis toward many chemical reactions. However, the controllable synthesis of catalytically active chiral plasmonic nanoparticles with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-06, Vol.20 (23), p.e2310353-n/a
Hauptverfasser: Liu, Chuang, Sun, Lichao, Yang, Guizeng, Cheng, Qingqing, Wang, Chen, Tao, Yunlong, Sun, Xuehao, Wang, Zixu, Zhang, Qingfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 23
container_start_page e2310353
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Liu, Chuang
Sun, Lichao
Yang, Guizeng
Cheng, Qingqing
Wang, Chen
Tao, Yunlong
Sun, Xuehao
Wang, Zixu
Zhang, Qingfeng
description Integrating the plasmonic chirality with excellent catalytic activities in plasmonic hybrid nanostructures provides a promising strategy to realize the chiral nanocatalysis toward many chemical reactions. However, the controllable synthesis of catalytically active chiral plasmonic nanoparticles with tailored geometries and compositions remains a significant challenge. Here it is demonstrated that chiral Au–Pd alloy nanorods with tunable optical chirality and catalytically active surfaces can be achieved by a seed‐mediated coreduction growth method. Through manipulating the chiral inducers, Au nanorods selectively transform into two different intrinsically chiral Au–Pd alloy nanorods with distinct geometric chirality and tunable optical chirality. By further adjusting several key synthetic parameters, the optical chirality, composition, and geometry of the chiral Au–Pd nanorods are fine‐tailored. More importantly, the chiral Au–Pd alloy nanorods exhibit appealing chiral catalytic activities as well as polarization‐dependent plasmon‐enhanced nanozyme catalytic activity, which has great potential for chiral nanocatalysis and plasmon‐induced chiral photochemistry. It is demonstrate that chiral Au–Pd alloy nanorods with tunable optical chirality and catalytically active surfaces can be achieved by a seed‐mediated coreduction growth method. The chiral Au–Pd alloy nanorods exhibit intriguing chiral catalytic activities as well as polarization‐dependent plasmon‐enhanced nanozyme catalytic activity, which holds great potential for chiral nanocatalysis and plasmon‐induced chiral photochemistry.
doi_str_mv 10.1002/smll.202310353
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2907197129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064726247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3733-69dc66b823c40c8e80e8deb9edcc5d9db5e1504bb528c5059afbe1b7310f5ee43</originalsourceid><addsrcrecordid>eNqFkMtO4zAUhq3RoAEK21mOLM2GTYsvcRIvq4qbVC4SsMXy5UQEuUnHTkDZ8Q68IU-CoaUjsWF1LJ3v_Pr9IfSbkgklhB3GhfcTRhinhAv-A-3QnPJxXjL5c_OmZBvtxvhACKcsK36hbV5SQXLBdtDd7L4O2uNp__r8cuXw1Pt2wBe6aUPrIn6qu3t80zfaeMCXy662iV2d1N2AdePwTHfaDx8bP-Cp7epHwNd9qLSFuIe2Ku0j7K_nCN0eH93MTsfzy5Oz2XQ-trzgqaN0Ns9NybjNiC2hJFA6MBKctcJJZwSkwpkxgpVWECF1ZYCaIv26EgAZH6GDVe4ytP96iJ1a1NGC97qBto-KSVJQWVAmE_r3C_rQ9qFJ7RQneVawPDlK1GRF2dDGGKBSy1AvdBgUJerdvHo3rzbm08GfdWxvFuA2-KfqBMgV8FR7GL6JU9fn8_n_8DdK1ZDU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064726247</pqid></control><display><type>article</type><title>Chiral Au–Pd Alloy Nanorods with Tunable Optical Chirality and Catalytically Active Surfaces</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Chuang ; Sun, Lichao ; Yang, Guizeng ; Cheng, Qingqing ; Wang, Chen ; Tao, Yunlong ; Sun, Xuehao ; Wang, Zixu ; Zhang, Qingfeng</creator><creatorcontrib>Liu, Chuang ; Sun, Lichao ; Yang, Guizeng ; Cheng, Qingqing ; Wang, Chen ; Tao, Yunlong ; Sun, Xuehao ; Wang, Zixu ; Zhang, Qingfeng</creatorcontrib><description>Integrating the plasmonic chirality with excellent catalytic activities in plasmonic hybrid nanostructures provides a promising strategy to realize the chiral nanocatalysis toward many chemical reactions. However, the controllable synthesis of catalytically active chiral plasmonic nanoparticles with tailored geometries and compositions remains a significant challenge. Here it is demonstrated that chiral Au–Pd alloy nanorods with tunable optical chirality and catalytically active surfaces can be achieved by a seed‐mediated coreduction growth method. Through manipulating the chiral inducers, Au nanorods selectively transform into two different intrinsically chiral Au–Pd alloy nanorods with distinct geometric chirality and tunable optical chirality. By further adjusting several key synthetic parameters, the optical chirality, composition, and geometry of the chiral Au–Pd nanorods are fine‐tailored. More importantly, the chiral Au–Pd alloy nanorods exhibit appealing chiral catalytic activities as well as polarization‐dependent plasmon‐enhanced nanozyme catalytic activity, which has great potential for chiral nanocatalysis and plasmon‐induced chiral photochemistry. It is demonstrate that chiral Au–Pd alloy nanorods with tunable optical chirality and catalytically active surfaces can be achieved by a seed‐mediated coreduction growth method. The chiral Au–Pd alloy nanorods exhibit intriguing chiral catalytic activities as well as polarization‐dependent plasmon‐enhanced nanozyme catalytic activity, which holds great potential for chiral nanocatalysis and plasmon‐induced chiral photochemistry.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202310353</identifier><identifier>PMID: 38150652</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Au–Pd alloy ; Catalytic activity ; Chemical reactions ; Chemical synthesis ; chiral nanoparticles ; Chirality ; Composition ; Controllability ; enantioselectivity ; Gold ; Gold base alloys ; Nanorods ; nanozyme ; Palladium ; Photochemistry ; plasmonic chirality ; Plasmonics ; Plasmons</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-06, Vol.20 (23), p.e2310353-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3733-69dc66b823c40c8e80e8deb9edcc5d9db5e1504bb528c5059afbe1b7310f5ee43</citedby><cites>FETCH-LOGICAL-c3733-69dc66b823c40c8e80e8deb9edcc5d9db5e1504bb528c5059afbe1b7310f5ee43</cites><orcidid>0000-0002-7004-9040</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202310353$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202310353$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38150652$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Chuang</creatorcontrib><creatorcontrib>Sun, Lichao</creatorcontrib><creatorcontrib>Yang, Guizeng</creatorcontrib><creatorcontrib>Cheng, Qingqing</creatorcontrib><creatorcontrib>Wang, Chen</creatorcontrib><creatorcontrib>Tao, Yunlong</creatorcontrib><creatorcontrib>Sun, Xuehao</creatorcontrib><creatorcontrib>Wang, Zixu</creatorcontrib><creatorcontrib>Zhang, Qingfeng</creatorcontrib><title>Chiral Au–Pd Alloy Nanorods with Tunable Optical Chirality and Catalytically Active Surfaces</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Integrating the plasmonic chirality with excellent catalytic activities in plasmonic hybrid nanostructures provides a promising strategy to realize the chiral nanocatalysis toward many chemical reactions. However, the controllable synthesis of catalytically active chiral plasmonic nanoparticles with tailored geometries and compositions remains a significant challenge. Here it is demonstrated that chiral Au–Pd alloy nanorods with tunable optical chirality and catalytically active surfaces can be achieved by a seed‐mediated coreduction growth method. Through manipulating the chiral inducers, Au nanorods selectively transform into two different intrinsically chiral Au–Pd alloy nanorods with distinct geometric chirality and tunable optical chirality. By further adjusting several key synthetic parameters, the optical chirality, composition, and geometry of the chiral Au–Pd nanorods are fine‐tailored. More importantly, the chiral Au–Pd alloy nanorods exhibit appealing chiral catalytic activities as well as polarization‐dependent plasmon‐enhanced nanozyme catalytic activity, which has great potential for chiral nanocatalysis and plasmon‐induced chiral photochemistry. It is demonstrate that chiral Au–Pd alloy nanorods with tunable optical chirality and catalytically active surfaces can be achieved by a seed‐mediated coreduction growth method. The chiral Au–Pd alloy nanorods exhibit intriguing chiral catalytic activities as well as polarization‐dependent plasmon‐enhanced nanozyme catalytic activity, which holds great potential for chiral nanocatalysis and plasmon‐induced chiral photochemistry.</description><subject>Au–Pd alloy</subject><subject>Catalytic activity</subject><subject>Chemical reactions</subject><subject>Chemical synthesis</subject><subject>chiral nanoparticles</subject><subject>Chirality</subject><subject>Composition</subject><subject>Controllability</subject><subject>enantioselectivity</subject><subject>Gold</subject><subject>Gold base alloys</subject><subject>Nanorods</subject><subject>nanozyme</subject><subject>Palladium</subject><subject>Photochemistry</subject><subject>plasmonic chirality</subject><subject>Plasmonics</subject><subject>Plasmons</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMtO4zAUhq3RoAEK21mOLM2GTYsvcRIvq4qbVC4SsMXy5UQEuUnHTkDZ8Q68IU-CoaUjsWF1LJ3v_Pr9IfSbkgklhB3GhfcTRhinhAv-A-3QnPJxXjL5c_OmZBvtxvhACKcsK36hbV5SQXLBdtDd7L4O2uNp__r8cuXw1Pt2wBe6aUPrIn6qu3t80zfaeMCXy662iV2d1N2AdePwTHfaDx8bP-Cp7epHwNd9qLSFuIe2Ku0j7K_nCN0eH93MTsfzy5Oz2XQ-trzgqaN0Ns9NybjNiC2hJFA6MBKctcJJZwSkwpkxgpVWECF1ZYCaIv26EgAZH6GDVe4ytP96iJ1a1NGC97qBto-KSVJQWVAmE_r3C_rQ9qFJ7RQneVawPDlK1GRF2dDGGKBSy1AvdBgUJerdvHo3rzbm08GfdWxvFuA2-KfqBMgV8FR7GL6JU9fn8_n_8DdK1ZDU</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Liu, Chuang</creator><creator>Sun, Lichao</creator><creator>Yang, Guizeng</creator><creator>Cheng, Qingqing</creator><creator>Wang, Chen</creator><creator>Tao, Yunlong</creator><creator>Sun, Xuehao</creator><creator>Wang, Zixu</creator><creator>Zhang, Qingfeng</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7004-9040</orcidid></search><sort><creationdate>20240601</creationdate><title>Chiral Au–Pd Alloy Nanorods with Tunable Optical Chirality and Catalytically Active Surfaces</title><author>Liu, Chuang ; Sun, Lichao ; Yang, Guizeng ; Cheng, Qingqing ; Wang, Chen ; Tao, Yunlong ; Sun, Xuehao ; Wang, Zixu ; Zhang, Qingfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3733-69dc66b823c40c8e80e8deb9edcc5d9db5e1504bb528c5059afbe1b7310f5ee43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Au–Pd alloy</topic><topic>Catalytic activity</topic><topic>Chemical reactions</topic><topic>Chemical synthesis</topic><topic>chiral nanoparticles</topic><topic>Chirality</topic><topic>Composition</topic><topic>Controllability</topic><topic>enantioselectivity</topic><topic>Gold</topic><topic>Gold base alloys</topic><topic>Nanorods</topic><topic>nanozyme</topic><topic>Palladium</topic><topic>Photochemistry</topic><topic>plasmonic chirality</topic><topic>Plasmonics</topic><topic>Plasmons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Chuang</creatorcontrib><creatorcontrib>Sun, Lichao</creatorcontrib><creatorcontrib>Yang, Guizeng</creatorcontrib><creatorcontrib>Cheng, Qingqing</creatorcontrib><creatorcontrib>Wang, Chen</creatorcontrib><creatorcontrib>Tao, Yunlong</creatorcontrib><creatorcontrib>Sun, Xuehao</creatorcontrib><creatorcontrib>Wang, Zixu</creatorcontrib><creatorcontrib>Zhang, Qingfeng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Chuang</au><au>Sun, Lichao</au><au>Yang, Guizeng</au><au>Cheng, Qingqing</au><au>Wang, Chen</au><au>Tao, Yunlong</au><au>Sun, Xuehao</au><au>Wang, Zixu</au><au>Zhang, Qingfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chiral Au–Pd Alloy Nanorods with Tunable Optical Chirality and Catalytically Active Surfaces</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>20</volume><issue>23</issue><spage>e2310353</spage><epage>n/a</epage><pages>e2310353-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Integrating the plasmonic chirality with excellent catalytic activities in plasmonic hybrid nanostructures provides a promising strategy to realize the chiral nanocatalysis toward many chemical reactions. However, the controllable synthesis of catalytically active chiral plasmonic nanoparticles with tailored geometries and compositions remains a significant challenge. Here it is demonstrated that chiral Au–Pd alloy nanorods with tunable optical chirality and catalytically active surfaces can be achieved by a seed‐mediated coreduction growth method. Through manipulating the chiral inducers, Au nanorods selectively transform into two different intrinsically chiral Au–Pd alloy nanorods with distinct geometric chirality and tunable optical chirality. By further adjusting several key synthetic parameters, the optical chirality, composition, and geometry of the chiral Au–Pd nanorods are fine‐tailored. More importantly, the chiral Au–Pd alloy nanorods exhibit appealing chiral catalytic activities as well as polarization‐dependent plasmon‐enhanced nanozyme catalytic activity, which has great potential for chiral nanocatalysis and plasmon‐induced chiral photochemistry. It is demonstrate that chiral Au–Pd alloy nanorods with tunable optical chirality and catalytically active surfaces can be achieved by a seed‐mediated coreduction growth method. The chiral Au–Pd alloy nanorods exhibit intriguing chiral catalytic activities as well as polarization‐dependent plasmon‐enhanced nanozyme catalytic activity, which holds great potential for chiral nanocatalysis and plasmon‐induced chiral photochemistry.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38150652</pmid><doi>10.1002/smll.202310353</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7004-9040</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-06, Vol.20 (23), p.e2310353-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2907197129
source Wiley Online Library Journals Frontfile Complete
subjects Au–Pd alloy
Catalytic activity
Chemical reactions
Chemical synthesis
chiral nanoparticles
Chirality
Composition
Controllability
enantioselectivity
Gold
Gold base alloys
Nanorods
nanozyme
Palladium
Photochemistry
plasmonic chirality
Plasmonics
Plasmons
title Chiral Au–Pd Alloy Nanorods with Tunable Optical Chirality and Catalytically Active Surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A41%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chiral%20Au%E2%80%93Pd%20Alloy%20Nanorods%20with%20Tunable%20Optical%20Chirality%20and%20Catalytically%20Active%20Surfaces&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Liu,%20Chuang&rft.date=2024-06-01&rft.volume=20&rft.issue=23&rft.spage=e2310353&rft.epage=n/a&rft.pages=e2310353-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202310353&rft_dat=%3Cproquest_cross%3E3064726247%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064726247&rft_id=info:pmid/38150652&rfr_iscdi=true