Chiral Au–Pd Alloy Nanorods with Tunable Optical Chirality and Catalytically Active Surfaces
Integrating the plasmonic chirality with excellent catalytic activities in plasmonic hybrid nanostructures provides a promising strategy to realize the chiral nanocatalysis toward many chemical reactions. However, the controllable synthesis of catalytically active chiral plasmonic nanoparticles with...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-06, Vol.20 (23), p.e2310353-n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 23 |
container_start_page | e2310353 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 20 |
creator | Liu, Chuang Sun, Lichao Yang, Guizeng Cheng, Qingqing Wang, Chen Tao, Yunlong Sun, Xuehao Wang, Zixu Zhang, Qingfeng |
description | Integrating the plasmonic chirality with excellent catalytic activities in plasmonic hybrid nanostructures provides a promising strategy to realize the chiral nanocatalysis toward many chemical reactions. However, the controllable synthesis of catalytically active chiral plasmonic nanoparticles with tailored geometries and compositions remains a significant challenge. Here it is demonstrated that chiral Au–Pd alloy nanorods with tunable optical chirality and catalytically active surfaces can be achieved by a seed‐mediated coreduction growth method. Through manipulating the chiral inducers, Au nanorods selectively transform into two different intrinsically chiral Au–Pd alloy nanorods with distinct geometric chirality and tunable optical chirality. By further adjusting several key synthetic parameters, the optical chirality, composition, and geometry of the chiral Au–Pd nanorods are fine‐tailored. More importantly, the chiral Au–Pd alloy nanorods exhibit appealing chiral catalytic activities as well as polarization‐dependent plasmon‐enhanced nanozyme catalytic activity, which has great potential for chiral nanocatalysis and plasmon‐induced chiral photochemistry.
It is demonstrate that chiral Au–Pd alloy nanorods with tunable optical chirality and catalytically active surfaces can be achieved by a seed‐mediated coreduction growth method. The chiral Au–Pd alloy nanorods exhibit intriguing chiral catalytic activities as well as polarization‐dependent plasmon‐enhanced nanozyme catalytic activity, which holds great potential for chiral nanocatalysis and plasmon‐induced chiral photochemistry. |
doi_str_mv | 10.1002/smll.202310353 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2907197129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064726247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3733-69dc66b823c40c8e80e8deb9edcc5d9db5e1504bb528c5059afbe1b7310f5ee43</originalsourceid><addsrcrecordid>eNqFkMtO4zAUhq3RoAEK21mOLM2GTYsvcRIvq4qbVC4SsMXy5UQEuUnHTkDZ8Q68IU-CoaUjsWF1LJ3v_Pr9IfSbkgklhB3GhfcTRhinhAv-A-3QnPJxXjL5c_OmZBvtxvhACKcsK36hbV5SQXLBdtDd7L4O2uNp__r8cuXw1Pt2wBe6aUPrIn6qu3t80zfaeMCXy662iV2d1N2AdePwTHfaDx8bP-Cp7epHwNd9qLSFuIe2Ku0j7K_nCN0eH93MTsfzy5Oz2XQ-trzgqaN0Ns9NybjNiC2hJFA6MBKctcJJZwSkwpkxgpVWECF1ZYCaIv26EgAZH6GDVe4ytP96iJ1a1NGC97qBto-KSVJQWVAmE_r3C_rQ9qFJ7RQneVawPDlK1GRF2dDGGKBSy1AvdBgUJerdvHo3rzbm08GfdWxvFuA2-KfqBMgV8FR7GL6JU9fn8_n_8DdK1ZDU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064726247</pqid></control><display><type>article</type><title>Chiral Au–Pd Alloy Nanorods with Tunable Optical Chirality and Catalytically Active Surfaces</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Chuang ; Sun, Lichao ; Yang, Guizeng ; Cheng, Qingqing ; Wang, Chen ; Tao, Yunlong ; Sun, Xuehao ; Wang, Zixu ; Zhang, Qingfeng</creator><creatorcontrib>Liu, Chuang ; Sun, Lichao ; Yang, Guizeng ; Cheng, Qingqing ; Wang, Chen ; Tao, Yunlong ; Sun, Xuehao ; Wang, Zixu ; Zhang, Qingfeng</creatorcontrib><description>Integrating the plasmonic chirality with excellent catalytic activities in plasmonic hybrid nanostructures provides a promising strategy to realize the chiral nanocatalysis toward many chemical reactions. However, the controllable synthesis of catalytically active chiral plasmonic nanoparticles with tailored geometries and compositions remains a significant challenge. Here it is demonstrated that chiral Au–Pd alloy nanorods with tunable optical chirality and catalytically active surfaces can be achieved by a seed‐mediated coreduction growth method. Through manipulating the chiral inducers, Au nanorods selectively transform into two different intrinsically chiral Au–Pd alloy nanorods with distinct geometric chirality and tunable optical chirality. By further adjusting several key synthetic parameters, the optical chirality, composition, and geometry of the chiral Au–Pd nanorods are fine‐tailored. More importantly, the chiral Au–Pd alloy nanorods exhibit appealing chiral catalytic activities as well as polarization‐dependent plasmon‐enhanced nanozyme catalytic activity, which has great potential for chiral nanocatalysis and plasmon‐induced chiral photochemistry.
It is demonstrate that chiral Au–Pd alloy nanorods with tunable optical chirality and catalytically active surfaces can be achieved by a seed‐mediated coreduction growth method. The chiral Au–Pd alloy nanorods exhibit intriguing chiral catalytic activities as well as polarization‐dependent plasmon‐enhanced nanozyme catalytic activity, which holds great potential for chiral nanocatalysis and plasmon‐induced chiral photochemistry.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202310353</identifier><identifier>PMID: 38150652</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Au–Pd alloy ; Catalytic activity ; Chemical reactions ; Chemical synthesis ; chiral nanoparticles ; Chirality ; Composition ; Controllability ; enantioselectivity ; Gold ; Gold base alloys ; Nanorods ; nanozyme ; Palladium ; Photochemistry ; plasmonic chirality ; Plasmonics ; Plasmons</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-06, Vol.20 (23), p.e2310353-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3733-69dc66b823c40c8e80e8deb9edcc5d9db5e1504bb528c5059afbe1b7310f5ee43</citedby><cites>FETCH-LOGICAL-c3733-69dc66b823c40c8e80e8deb9edcc5d9db5e1504bb528c5059afbe1b7310f5ee43</cites><orcidid>0000-0002-7004-9040</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202310353$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202310353$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38150652$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Chuang</creatorcontrib><creatorcontrib>Sun, Lichao</creatorcontrib><creatorcontrib>Yang, Guizeng</creatorcontrib><creatorcontrib>Cheng, Qingqing</creatorcontrib><creatorcontrib>Wang, Chen</creatorcontrib><creatorcontrib>Tao, Yunlong</creatorcontrib><creatorcontrib>Sun, Xuehao</creatorcontrib><creatorcontrib>Wang, Zixu</creatorcontrib><creatorcontrib>Zhang, Qingfeng</creatorcontrib><title>Chiral Au–Pd Alloy Nanorods with Tunable Optical Chirality and Catalytically Active Surfaces</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Integrating the plasmonic chirality with excellent catalytic activities in plasmonic hybrid nanostructures provides a promising strategy to realize the chiral nanocatalysis toward many chemical reactions. However, the controllable synthesis of catalytically active chiral plasmonic nanoparticles with tailored geometries and compositions remains a significant challenge. Here it is demonstrated that chiral Au–Pd alloy nanorods with tunable optical chirality and catalytically active surfaces can be achieved by a seed‐mediated coreduction growth method. Through manipulating the chiral inducers, Au nanorods selectively transform into two different intrinsically chiral Au–Pd alloy nanorods with distinct geometric chirality and tunable optical chirality. By further adjusting several key synthetic parameters, the optical chirality, composition, and geometry of the chiral Au–Pd nanorods are fine‐tailored. More importantly, the chiral Au–Pd alloy nanorods exhibit appealing chiral catalytic activities as well as polarization‐dependent plasmon‐enhanced nanozyme catalytic activity, which has great potential for chiral nanocatalysis and plasmon‐induced chiral photochemistry.
It is demonstrate that chiral Au–Pd alloy nanorods with tunable optical chirality and catalytically active surfaces can be achieved by a seed‐mediated coreduction growth method. The chiral Au–Pd alloy nanorods exhibit intriguing chiral catalytic activities as well as polarization‐dependent plasmon‐enhanced nanozyme catalytic activity, which holds great potential for chiral nanocatalysis and plasmon‐induced chiral photochemistry.</description><subject>Au–Pd alloy</subject><subject>Catalytic activity</subject><subject>Chemical reactions</subject><subject>Chemical synthesis</subject><subject>chiral nanoparticles</subject><subject>Chirality</subject><subject>Composition</subject><subject>Controllability</subject><subject>enantioselectivity</subject><subject>Gold</subject><subject>Gold base alloys</subject><subject>Nanorods</subject><subject>nanozyme</subject><subject>Palladium</subject><subject>Photochemistry</subject><subject>plasmonic chirality</subject><subject>Plasmonics</subject><subject>Plasmons</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMtO4zAUhq3RoAEK21mOLM2GTYsvcRIvq4qbVC4SsMXy5UQEuUnHTkDZ8Q68IU-CoaUjsWF1LJ3v_Pr9IfSbkgklhB3GhfcTRhinhAv-A-3QnPJxXjL5c_OmZBvtxvhACKcsK36hbV5SQXLBdtDd7L4O2uNp__r8cuXw1Pt2wBe6aUPrIn6qu3t80zfaeMCXy662iV2d1N2AdePwTHfaDx8bP-Cp7epHwNd9qLSFuIe2Ku0j7K_nCN0eH93MTsfzy5Oz2XQ-trzgqaN0Ns9NybjNiC2hJFA6MBKctcJJZwSkwpkxgpVWECF1ZYCaIv26EgAZH6GDVe4ytP96iJ1a1NGC97qBto-KSVJQWVAmE_r3C_rQ9qFJ7RQneVawPDlK1GRF2dDGGKBSy1AvdBgUJerdvHo3rzbm08GfdWxvFuA2-KfqBMgV8FR7GL6JU9fn8_n_8DdK1ZDU</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Liu, Chuang</creator><creator>Sun, Lichao</creator><creator>Yang, Guizeng</creator><creator>Cheng, Qingqing</creator><creator>Wang, Chen</creator><creator>Tao, Yunlong</creator><creator>Sun, Xuehao</creator><creator>Wang, Zixu</creator><creator>Zhang, Qingfeng</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7004-9040</orcidid></search><sort><creationdate>20240601</creationdate><title>Chiral Au–Pd Alloy Nanorods with Tunable Optical Chirality and Catalytically Active Surfaces</title><author>Liu, Chuang ; Sun, Lichao ; Yang, Guizeng ; Cheng, Qingqing ; Wang, Chen ; Tao, Yunlong ; Sun, Xuehao ; Wang, Zixu ; Zhang, Qingfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3733-69dc66b823c40c8e80e8deb9edcc5d9db5e1504bb528c5059afbe1b7310f5ee43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Au–Pd alloy</topic><topic>Catalytic activity</topic><topic>Chemical reactions</topic><topic>Chemical synthesis</topic><topic>chiral nanoparticles</topic><topic>Chirality</topic><topic>Composition</topic><topic>Controllability</topic><topic>enantioselectivity</topic><topic>Gold</topic><topic>Gold base alloys</topic><topic>Nanorods</topic><topic>nanozyme</topic><topic>Palladium</topic><topic>Photochemistry</topic><topic>plasmonic chirality</topic><topic>Plasmonics</topic><topic>Plasmons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Chuang</creatorcontrib><creatorcontrib>Sun, Lichao</creatorcontrib><creatorcontrib>Yang, Guizeng</creatorcontrib><creatorcontrib>Cheng, Qingqing</creatorcontrib><creatorcontrib>Wang, Chen</creatorcontrib><creatorcontrib>Tao, Yunlong</creatorcontrib><creatorcontrib>Sun, Xuehao</creatorcontrib><creatorcontrib>Wang, Zixu</creatorcontrib><creatorcontrib>Zhang, Qingfeng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Chuang</au><au>Sun, Lichao</au><au>Yang, Guizeng</au><au>Cheng, Qingqing</au><au>Wang, Chen</au><au>Tao, Yunlong</au><au>Sun, Xuehao</au><au>Wang, Zixu</au><au>Zhang, Qingfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chiral Au–Pd Alloy Nanorods with Tunable Optical Chirality and Catalytically Active Surfaces</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>20</volume><issue>23</issue><spage>e2310353</spage><epage>n/a</epage><pages>e2310353-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Integrating the plasmonic chirality with excellent catalytic activities in plasmonic hybrid nanostructures provides a promising strategy to realize the chiral nanocatalysis toward many chemical reactions. However, the controllable synthesis of catalytically active chiral plasmonic nanoparticles with tailored geometries and compositions remains a significant challenge. Here it is demonstrated that chiral Au–Pd alloy nanorods with tunable optical chirality and catalytically active surfaces can be achieved by a seed‐mediated coreduction growth method. Through manipulating the chiral inducers, Au nanorods selectively transform into two different intrinsically chiral Au–Pd alloy nanorods with distinct geometric chirality and tunable optical chirality. By further adjusting several key synthetic parameters, the optical chirality, composition, and geometry of the chiral Au–Pd nanorods are fine‐tailored. More importantly, the chiral Au–Pd alloy nanorods exhibit appealing chiral catalytic activities as well as polarization‐dependent plasmon‐enhanced nanozyme catalytic activity, which has great potential for chiral nanocatalysis and plasmon‐induced chiral photochemistry.
It is demonstrate that chiral Au–Pd alloy nanorods with tunable optical chirality and catalytically active surfaces can be achieved by a seed‐mediated coreduction growth method. The chiral Au–Pd alloy nanorods exhibit intriguing chiral catalytic activities as well as polarization‐dependent plasmon‐enhanced nanozyme catalytic activity, which holds great potential for chiral nanocatalysis and plasmon‐induced chiral photochemistry.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38150652</pmid><doi>10.1002/smll.202310353</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7004-9040</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2024-06, Vol.20 (23), p.e2310353-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2907197129 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Au–Pd alloy Catalytic activity Chemical reactions Chemical synthesis chiral nanoparticles Chirality Composition Controllability enantioselectivity Gold Gold base alloys Nanorods nanozyme Palladium Photochemistry plasmonic chirality Plasmonics Plasmons |
title | Chiral Au–Pd Alloy Nanorods with Tunable Optical Chirality and Catalytically Active Surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A41%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chiral%20Au%E2%80%93Pd%20Alloy%20Nanorods%20with%20Tunable%20Optical%20Chirality%20and%20Catalytically%20Active%20Surfaces&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Liu,%20Chuang&rft.date=2024-06-01&rft.volume=20&rft.issue=23&rft.spage=e2310353&rft.epage=n/a&rft.pages=e2310353-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202310353&rft_dat=%3Cproquest_cross%3E3064726247%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064726247&rft_id=info:pmid/38150652&rfr_iscdi=true |