Facile and Green Synthesis of Well‐Defined Nanocrystal Oxygen Evolution Catalysts by Rational Crystallization Regulation

The development of catalysts for an economical and efficient oxygen evolution reaction (OER) is critical for clean and sustainable energy storage and conversion. Nickel–iron‐based (NiFe) nanostructures are widely investigated as active OER catalysts and especially shape‐controlled nanocrystals exhib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-05, Vol.20 (21), p.e2308594-n/a
Hauptverfasser: Jiang, Wulyu, Xia, Lu, Ferreira Gomes, Bruna, Haumann, Michael, Dau, Holger, Roth, Christina, Lehnert, Werner, Shviro, Meital
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 21
container_start_page e2308594
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Jiang, Wulyu
Xia, Lu
Ferreira Gomes, Bruna
Haumann, Michael
Dau, Holger
Roth, Christina
Lehnert, Werner
Shviro, Meital
description The development of catalysts for an economical and efficient oxygen evolution reaction (OER) is critical for clean and sustainable energy storage and conversion. Nickel–iron‐based (NiFe) nanostructures are widely investigated as active OER catalysts and especially shape‐controlled nanocrystals exhibit optimized surface structure and electronic properties. However, the structural control from amorphous to well‐defined crystals is usually time‐consuming and requires multiple stages. Here, a universal two‐step precipitation‐hydrothermal approach is reported to prepare a series of NiFe‐based nanocrystals (e.g., hydroxides, sulfides, and molybdates) from amorphous precipitates. Their morphology and evolution of atomic and electronic structure during this process are studied using conclusive microscopy and spectroscopy techniques. The short‐term, additive‐free, and low‐cost method allows for the control of the crystallinity of the materials and facilitates the generation of nanosheets, nanorods, or nano‐octahedra with excellent water oxidation activity. The NiFe‐based crystalline catalysts exhibit slightly compromised initial activity but more robust long‐term stability than their amorphous counterparts during electrochemical operation. This facile, reliable, and universal synthesis method is promising in strategies for fabricating NiFe‐based nanostructures as efficient and economically valuable OER electrocatalysts. A straightforward method is developed for synthesizing diverse transition metal‐based nanocrystals as catalysts for alkaline water electrolysis. Hydrothermal treatment of NiFe‐based hydroxides, sulfides, and molybdates produces nanosheets, nano‐octahedra, and nanorods with enhanced crystallinity. This adaptable, addictive‐free method allows large‐scale synthesis of well‐defined nanocatalysts, paving the way for applications in water electrolyzers, fuel cells, and metal‐air batteries.
doi_str_mv 10.1002/smll.202308594
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2907195684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2907195684</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3734-c34bd1b027c8627c310c59d0669973d41546d9e9048886ac3eebc0c9d837bb7e3</originalsourceid><addsrcrecordid>eNqFkb9u2zAQxomgRewmWTMWBLpksXsUKZEcC-dPC7g14CTISFDU2ZFBS65otVWmPkKeMU9S2k5cIEuWu8N3v_uAw0fIKYMhA0g-h6X3wwQSDirV4oD0Wcb4IFOJfrefGfTIhxAWAJwlQh6SHlcsTbQUffJwaV3pkdqqoFcNYkWvu2p9j6EMtJ7RO_T-6e_jOc7KCgv6w1a1a7qwtp5O_nTziF_8qn27LuuKjmyU4y7QvKNTu9EiNtrhvnzYKnSK89Zvx2PyfmZ9wJPnfkRuLy9uRl8H48nVt9GX8cBxyUWsIi9YDol0KouFM3CpLiDLtJa8ECwVWaFRg1BKZdZxxNyB04XiMs8l8iNytvNdNfXPFsPaLMvg4mO2wroNJtEgmU4zJSL66RW6qNsmvhEMh1Qz0EpCpIY7yjV1CA3OzKopl7bpDAOzScVsUjH7VOLBx2fbNl9iscdfYoiA3gG_YxbdG3bm-vt4_N_8H_-om2s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059109870</pqid></control><display><type>article</type><title>Facile and Green Synthesis of Well‐Defined Nanocrystal Oxygen Evolution Catalysts by Rational Crystallization Regulation</title><source>Wiley Online Library All Journals</source><creator>Jiang, Wulyu ; Xia, Lu ; Ferreira Gomes, Bruna ; Haumann, Michael ; Dau, Holger ; Roth, Christina ; Lehnert, Werner ; Shviro, Meital</creator><creatorcontrib>Jiang, Wulyu ; Xia, Lu ; Ferreira Gomes, Bruna ; Haumann, Michael ; Dau, Holger ; Roth, Christina ; Lehnert, Werner ; Shviro, Meital</creatorcontrib><description>The development of catalysts for an economical and efficient oxygen evolution reaction (OER) is critical for clean and sustainable energy storage and conversion. Nickel–iron‐based (NiFe) nanostructures are widely investigated as active OER catalysts and especially shape‐controlled nanocrystals exhibit optimized surface structure and electronic properties. However, the structural control from amorphous to well‐defined crystals is usually time‐consuming and requires multiple stages. Here, a universal two‐step precipitation‐hydrothermal approach is reported to prepare a series of NiFe‐based nanocrystals (e.g., hydroxides, sulfides, and molybdates) from amorphous precipitates. Their morphology and evolution of atomic and electronic structure during this process are studied using conclusive microscopy and spectroscopy techniques. The short‐term, additive‐free, and low‐cost method allows for the control of the crystallinity of the materials and facilitates the generation of nanosheets, nanorods, or nano‐octahedra with excellent water oxidation activity. The NiFe‐based crystalline catalysts exhibit slightly compromised initial activity but more robust long‐term stability than their amorphous counterparts during electrochemical operation. This facile, reliable, and universal synthesis method is promising in strategies for fabricating NiFe‐based nanostructures as efficient and economically valuable OER electrocatalysts. A straightforward method is developed for synthesizing diverse transition metal‐based nanocrystals as catalysts for alkaline water electrolysis. Hydrothermal treatment of NiFe‐based hydroxides, sulfides, and molybdates produces nanosheets, nano‐octahedra, and nanorods with enhanced crystallinity. This adaptable, addictive‐free method allows large‐scale synthesis of well‐defined nanocatalysts, paving the way for applications in water electrolyzers, fuel cells, and metal‐air batteries.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202308594</identifier><identifier>PMID: 38152974</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Atomic structure ; Catalysts ; Clean energy ; Crystallization ; Electrocatalysts ; Electronic properties ; Electronic structure ; Energy storage ; Hydroxides ; Intermetallic compounds ; Iron compounds ; Molybdates ; Nanocrystals ; Nanorods ; Nanostructure ; Nickel compounds ; nickel‐iron ; Oxidation ; oxygen evolution reaction ; Oxygen evolution reactions ; Precipitates ; Surface structure ; Synthesis ; X‐ray absorption spectra</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-05, Vol.20 (21), p.e2308594-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3734-c34bd1b027c8627c310c59d0669973d41546d9e9048886ac3eebc0c9d837bb7e3</citedby><cites>FETCH-LOGICAL-c3734-c34bd1b027c8627c310c59d0669973d41546d9e9048886ac3eebc0c9d837bb7e3</cites><orcidid>0000-0002-9494-0233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202308594$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202308594$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38152974$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Wulyu</creatorcontrib><creatorcontrib>Xia, Lu</creatorcontrib><creatorcontrib>Ferreira Gomes, Bruna</creatorcontrib><creatorcontrib>Haumann, Michael</creatorcontrib><creatorcontrib>Dau, Holger</creatorcontrib><creatorcontrib>Roth, Christina</creatorcontrib><creatorcontrib>Lehnert, Werner</creatorcontrib><creatorcontrib>Shviro, Meital</creatorcontrib><title>Facile and Green Synthesis of Well‐Defined Nanocrystal Oxygen Evolution Catalysts by Rational Crystallization Regulation</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>The development of catalysts for an economical and efficient oxygen evolution reaction (OER) is critical for clean and sustainable energy storage and conversion. Nickel–iron‐based (NiFe) nanostructures are widely investigated as active OER catalysts and especially shape‐controlled nanocrystals exhibit optimized surface structure and electronic properties. However, the structural control from amorphous to well‐defined crystals is usually time‐consuming and requires multiple stages. Here, a universal two‐step precipitation‐hydrothermal approach is reported to prepare a series of NiFe‐based nanocrystals (e.g., hydroxides, sulfides, and molybdates) from amorphous precipitates. Their morphology and evolution of atomic and electronic structure during this process are studied using conclusive microscopy and spectroscopy techniques. The short‐term, additive‐free, and low‐cost method allows for the control of the crystallinity of the materials and facilitates the generation of nanosheets, nanorods, or nano‐octahedra with excellent water oxidation activity. The NiFe‐based crystalline catalysts exhibit slightly compromised initial activity but more robust long‐term stability than their amorphous counterparts during electrochemical operation. This facile, reliable, and universal synthesis method is promising in strategies for fabricating NiFe‐based nanostructures as efficient and economically valuable OER electrocatalysts. A straightforward method is developed for synthesizing diverse transition metal‐based nanocrystals as catalysts for alkaline water electrolysis. Hydrothermal treatment of NiFe‐based hydroxides, sulfides, and molybdates produces nanosheets, nano‐octahedra, and nanorods with enhanced crystallinity. This adaptable, addictive‐free method allows large‐scale synthesis of well‐defined nanocatalysts, paving the way for applications in water electrolyzers, fuel cells, and metal‐air batteries.</description><subject>Atomic structure</subject><subject>Catalysts</subject><subject>Clean energy</subject><subject>Crystallization</subject><subject>Electrocatalysts</subject><subject>Electronic properties</subject><subject>Electronic structure</subject><subject>Energy storage</subject><subject>Hydroxides</subject><subject>Intermetallic compounds</subject><subject>Iron compounds</subject><subject>Molybdates</subject><subject>Nanocrystals</subject><subject>Nanorods</subject><subject>Nanostructure</subject><subject>Nickel compounds</subject><subject>nickel‐iron</subject><subject>Oxidation</subject><subject>oxygen evolution reaction</subject><subject>Oxygen evolution reactions</subject><subject>Precipitates</subject><subject>Surface structure</subject><subject>Synthesis</subject><subject>X‐ray absorption spectra</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkb9u2zAQxomgRewmWTMWBLpksXsUKZEcC-dPC7g14CTISFDU2ZFBS65otVWmPkKeMU9S2k5cIEuWu8N3v_uAw0fIKYMhA0g-h6X3wwQSDirV4oD0Wcb4IFOJfrefGfTIhxAWAJwlQh6SHlcsTbQUffJwaV3pkdqqoFcNYkWvu2p9j6EMtJ7RO_T-6e_jOc7KCgv6w1a1a7qwtp5O_nTziF_8qn27LuuKjmyU4y7QvKNTu9EiNtrhvnzYKnSK89Zvx2PyfmZ9wJPnfkRuLy9uRl8H48nVt9GX8cBxyUWsIi9YDol0KouFM3CpLiDLtJa8ECwVWaFRg1BKZdZxxNyB04XiMs8l8iNytvNdNfXPFsPaLMvg4mO2wroNJtEgmU4zJSL66RW6qNsmvhEMh1Qz0EpCpIY7yjV1CA3OzKopl7bpDAOzScVsUjH7VOLBx2fbNl9iscdfYoiA3gG_YxbdG3bm-vt4_N_8H_-om2s</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Jiang, Wulyu</creator><creator>Xia, Lu</creator><creator>Ferreira Gomes, Bruna</creator><creator>Haumann, Michael</creator><creator>Dau, Holger</creator><creator>Roth, Christina</creator><creator>Lehnert, Werner</creator><creator>Shviro, Meital</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9494-0233</orcidid></search><sort><creationdate>20240501</creationdate><title>Facile and Green Synthesis of Well‐Defined Nanocrystal Oxygen Evolution Catalysts by Rational Crystallization Regulation</title><author>Jiang, Wulyu ; Xia, Lu ; Ferreira Gomes, Bruna ; Haumann, Michael ; Dau, Holger ; Roth, Christina ; Lehnert, Werner ; Shviro, Meital</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3734-c34bd1b027c8627c310c59d0669973d41546d9e9048886ac3eebc0c9d837bb7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atomic structure</topic><topic>Catalysts</topic><topic>Clean energy</topic><topic>Crystallization</topic><topic>Electrocatalysts</topic><topic>Electronic properties</topic><topic>Electronic structure</topic><topic>Energy storage</topic><topic>Hydroxides</topic><topic>Intermetallic compounds</topic><topic>Iron compounds</topic><topic>Molybdates</topic><topic>Nanocrystals</topic><topic>Nanorods</topic><topic>Nanostructure</topic><topic>Nickel compounds</topic><topic>nickel‐iron</topic><topic>Oxidation</topic><topic>oxygen evolution reaction</topic><topic>Oxygen evolution reactions</topic><topic>Precipitates</topic><topic>Surface structure</topic><topic>Synthesis</topic><topic>X‐ray absorption spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Wulyu</creatorcontrib><creatorcontrib>Xia, Lu</creatorcontrib><creatorcontrib>Ferreira Gomes, Bruna</creatorcontrib><creatorcontrib>Haumann, Michael</creatorcontrib><creatorcontrib>Dau, Holger</creatorcontrib><creatorcontrib>Roth, Christina</creatorcontrib><creatorcontrib>Lehnert, Werner</creatorcontrib><creatorcontrib>Shviro, Meital</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Wulyu</au><au>Xia, Lu</au><au>Ferreira Gomes, Bruna</au><au>Haumann, Michael</au><au>Dau, Holger</au><au>Roth, Christina</au><au>Lehnert, Werner</au><au>Shviro, Meital</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facile and Green Synthesis of Well‐Defined Nanocrystal Oxygen Evolution Catalysts by Rational Crystallization Regulation</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>20</volume><issue>21</issue><spage>e2308594</spage><epage>n/a</epage><pages>e2308594-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>The development of catalysts for an economical and efficient oxygen evolution reaction (OER) is critical for clean and sustainable energy storage and conversion. Nickel–iron‐based (NiFe) nanostructures are widely investigated as active OER catalysts and especially shape‐controlled nanocrystals exhibit optimized surface structure and electronic properties. However, the structural control from amorphous to well‐defined crystals is usually time‐consuming and requires multiple stages. Here, a universal two‐step precipitation‐hydrothermal approach is reported to prepare a series of NiFe‐based nanocrystals (e.g., hydroxides, sulfides, and molybdates) from amorphous precipitates. Their morphology and evolution of atomic and electronic structure during this process are studied using conclusive microscopy and spectroscopy techniques. The short‐term, additive‐free, and low‐cost method allows for the control of the crystallinity of the materials and facilitates the generation of nanosheets, nanorods, or nano‐octahedra with excellent water oxidation activity. The NiFe‐based crystalline catalysts exhibit slightly compromised initial activity but more robust long‐term stability than their amorphous counterparts during electrochemical operation. This facile, reliable, and universal synthesis method is promising in strategies for fabricating NiFe‐based nanostructures as efficient and economically valuable OER electrocatalysts. A straightforward method is developed for synthesizing diverse transition metal‐based nanocrystals as catalysts for alkaline water electrolysis. Hydrothermal treatment of NiFe‐based hydroxides, sulfides, and molybdates produces nanosheets, nano‐octahedra, and nanorods with enhanced crystallinity. This adaptable, addictive‐free method allows large‐scale synthesis of well‐defined nanocatalysts, paving the way for applications in water electrolyzers, fuel cells, and metal‐air batteries.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38152974</pmid><doi>10.1002/smll.202308594</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9494-0233</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-05, Vol.20 (21), p.e2308594-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2907195684
source Wiley Online Library All Journals
subjects Atomic structure
Catalysts
Clean energy
Crystallization
Electrocatalysts
Electronic properties
Electronic structure
Energy storage
Hydroxides
Intermetallic compounds
Iron compounds
Molybdates
Nanocrystals
Nanorods
Nanostructure
Nickel compounds
nickel‐iron
Oxidation
oxygen evolution reaction
Oxygen evolution reactions
Precipitates
Surface structure
Synthesis
X‐ray absorption spectra
title Facile and Green Synthesis of Well‐Defined Nanocrystal Oxygen Evolution Catalysts by Rational Crystallization Regulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A02%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facile%20and%20Green%20Synthesis%20of%20Well%E2%80%90Defined%20Nanocrystal%20Oxygen%20Evolution%20Catalysts%20by%20Rational%20Crystallization%20Regulation&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Jiang,%20Wulyu&rft.date=2024-05-01&rft.volume=20&rft.issue=21&rft.spage=e2308594&rft.epage=n/a&rft.pages=e2308594-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202308594&rft_dat=%3Cproquest_cross%3E2907195684%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3059109870&rft_id=info:pmid/38152974&rfr_iscdi=true