Facile and Green Synthesis of Well‐Defined Nanocrystal Oxygen Evolution Catalysts by Rational Crystallization Regulation
The development of catalysts for an economical and efficient oxygen evolution reaction (OER) is critical for clean and sustainable energy storage and conversion. Nickel–iron‐based (NiFe) nanostructures are widely investigated as active OER catalysts and especially shape‐controlled nanocrystals exhib...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-05, Vol.20 (21), p.e2308594-n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 21 |
container_start_page | e2308594 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 20 |
creator | Jiang, Wulyu Xia, Lu Ferreira Gomes, Bruna Haumann, Michael Dau, Holger Roth, Christina Lehnert, Werner Shviro, Meital |
description | The development of catalysts for an economical and efficient oxygen evolution reaction (OER) is critical for clean and sustainable energy storage and conversion. Nickel–iron‐based (NiFe) nanostructures are widely investigated as active OER catalysts and especially shape‐controlled nanocrystals exhibit optimized surface structure and electronic properties. However, the structural control from amorphous to well‐defined crystals is usually time‐consuming and requires multiple stages. Here, a universal two‐step precipitation‐hydrothermal approach is reported to prepare a series of NiFe‐based nanocrystals (e.g., hydroxides, sulfides, and molybdates) from amorphous precipitates. Their morphology and evolution of atomic and electronic structure during this process are studied using conclusive microscopy and spectroscopy techniques. The short‐term, additive‐free, and low‐cost method allows for the control of the crystallinity of the materials and facilitates the generation of nanosheets, nanorods, or nano‐octahedra with excellent water oxidation activity. The NiFe‐based crystalline catalysts exhibit slightly compromised initial activity but more robust long‐term stability than their amorphous counterparts during electrochemical operation. This facile, reliable, and universal synthesis method is promising in strategies for fabricating NiFe‐based nanostructures as efficient and economically valuable OER electrocatalysts.
A straightforward method is developed for synthesizing diverse transition metal‐based nanocrystals as catalysts for alkaline water electrolysis. Hydrothermal treatment of NiFe‐based hydroxides, sulfides, and molybdates produces nanosheets, nano‐octahedra, and nanorods with enhanced crystallinity. This adaptable, addictive‐free method allows large‐scale synthesis of well‐defined nanocatalysts, paving the way for applications in water electrolyzers, fuel cells, and metal‐air batteries. |
doi_str_mv | 10.1002/smll.202308594 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2907195684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2907195684</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3734-c34bd1b027c8627c310c59d0669973d41546d9e9048886ac3eebc0c9d837bb7e3</originalsourceid><addsrcrecordid>eNqFkb9u2zAQxomgRewmWTMWBLpksXsUKZEcC-dPC7g14CTISFDU2ZFBS65otVWmPkKeMU9S2k5cIEuWu8N3v_uAw0fIKYMhA0g-h6X3wwQSDirV4oD0Wcb4IFOJfrefGfTIhxAWAJwlQh6SHlcsTbQUffJwaV3pkdqqoFcNYkWvu2p9j6EMtJ7RO_T-6e_jOc7KCgv6w1a1a7qwtp5O_nTziF_8qn27LuuKjmyU4y7QvKNTu9EiNtrhvnzYKnSK89Zvx2PyfmZ9wJPnfkRuLy9uRl8H48nVt9GX8cBxyUWsIi9YDol0KouFM3CpLiDLtJa8ECwVWaFRg1BKZdZxxNyB04XiMs8l8iNytvNdNfXPFsPaLMvg4mO2wroNJtEgmU4zJSL66RW6qNsmvhEMh1Qz0EpCpIY7yjV1CA3OzKopl7bpDAOzScVsUjH7VOLBx2fbNl9iscdfYoiA3gG_YxbdG3bm-vt4_N_8H_-om2s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059109870</pqid></control><display><type>article</type><title>Facile and Green Synthesis of Well‐Defined Nanocrystal Oxygen Evolution Catalysts by Rational Crystallization Regulation</title><source>Wiley Online Library All Journals</source><creator>Jiang, Wulyu ; Xia, Lu ; Ferreira Gomes, Bruna ; Haumann, Michael ; Dau, Holger ; Roth, Christina ; Lehnert, Werner ; Shviro, Meital</creator><creatorcontrib>Jiang, Wulyu ; Xia, Lu ; Ferreira Gomes, Bruna ; Haumann, Michael ; Dau, Holger ; Roth, Christina ; Lehnert, Werner ; Shviro, Meital</creatorcontrib><description>The development of catalysts for an economical and efficient oxygen evolution reaction (OER) is critical for clean and sustainable energy storage and conversion. Nickel–iron‐based (NiFe) nanostructures are widely investigated as active OER catalysts and especially shape‐controlled nanocrystals exhibit optimized surface structure and electronic properties. However, the structural control from amorphous to well‐defined crystals is usually time‐consuming and requires multiple stages. Here, a universal two‐step precipitation‐hydrothermal approach is reported to prepare a series of NiFe‐based nanocrystals (e.g., hydroxides, sulfides, and molybdates) from amorphous precipitates. Their morphology and evolution of atomic and electronic structure during this process are studied using conclusive microscopy and spectroscopy techniques. The short‐term, additive‐free, and low‐cost method allows for the control of the crystallinity of the materials and facilitates the generation of nanosheets, nanorods, or nano‐octahedra with excellent water oxidation activity. The NiFe‐based crystalline catalysts exhibit slightly compromised initial activity but more robust long‐term stability than their amorphous counterparts during electrochemical operation. This facile, reliable, and universal synthesis method is promising in strategies for fabricating NiFe‐based nanostructures as efficient and economically valuable OER electrocatalysts.
A straightforward method is developed for synthesizing diverse transition metal‐based nanocrystals as catalysts for alkaline water electrolysis. Hydrothermal treatment of NiFe‐based hydroxides, sulfides, and molybdates produces nanosheets, nano‐octahedra, and nanorods with enhanced crystallinity. This adaptable, addictive‐free method allows large‐scale synthesis of well‐defined nanocatalysts, paving the way for applications in water electrolyzers, fuel cells, and metal‐air batteries.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202308594</identifier><identifier>PMID: 38152974</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Atomic structure ; Catalysts ; Clean energy ; Crystallization ; Electrocatalysts ; Electronic properties ; Electronic structure ; Energy storage ; Hydroxides ; Intermetallic compounds ; Iron compounds ; Molybdates ; Nanocrystals ; Nanorods ; Nanostructure ; Nickel compounds ; nickel‐iron ; Oxidation ; oxygen evolution reaction ; Oxygen evolution reactions ; Precipitates ; Surface structure ; Synthesis ; X‐ray absorption spectra</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-05, Vol.20 (21), p.e2308594-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3734-c34bd1b027c8627c310c59d0669973d41546d9e9048886ac3eebc0c9d837bb7e3</citedby><cites>FETCH-LOGICAL-c3734-c34bd1b027c8627c310c59d0669973d41546d9e9048886ac3eebc0c9d837bb7e3</cites><orcidid>0000-0002-9494-0233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202308594$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202308594$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38152974$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Wulyu</creatorcontrib><creatorcontrib>Xia, Lu</creatorcontrib><creatorcontrib>Ferreira Gomes, Bruna</creatorcontrib><creatorcontrib>Haumann, Michael</creatorcontrib><creatorcontrib>Dau, Holger</creatorcontrib><creatorcontrib>Roth, Christina</creatorcontrib><creatorcontrib>Lehnert, Werner</creatorcontrib><creatorcontrib>Shviro, Meital</creatorcontrib><title>Facile and Green Synthesis of Well‐Defined Nanocrystal Oxygen Evolution Catalysts by Rational Crystallization Regulation</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>The development of catalysts for an economical and efficient oxygen evolution reaction (OER) is critical for clean and sustainable energy storage and conversion. Nickel–iron‐based (NiFe) nanostructures are widely investigated as active OER catalysts and especially shape‐controlled nanocrystals exhibit optimized surface structure and electronic properties. However, the structural control from amorphous to well‐defined crystals is usually time‐consuming and requires multiple stages. Here, a universal two‐step precipitation‐hydrothermal approach is reported to prepare a series of NiFe‐based nanocrystals (e.g., hydroxides, sulfides, and molybdates) from amorphous precipitates. Their morphology and evolution of atomic and electronic structure during this process are studied using conclusive microscopy and spectroscopy techniques. The short‐term, additive‐free, and low‐cost method allows for the control of the crystallinity of the materials and facilitates the generation of nanosheets, nanorods, or nano‐octahedra with excellent water oxidation activity. The NiFe‐based crystalline catalysts exhibit slightly compromised initial activity but more robust long‐term stability than their amorphous counterparts during electrochemical operation. This facile, reliable, and universal synthesis method is promising in strategies for fabricating NiFe‐based nanostructures as efficient and economically valuable OER electrocatalysts.
A straightforward method is developed for synthesizing diverse transition metal‐based nanocrystals as catalysts for alkaline water electrolysis. Hydrothermal treatment of NiFe‐based hydroxides, sulfides, and molybdates produces nanosheets, nano‐octahedra, and nanorods with enhanced crystallinity. This adaptable, addictive‐free method allows large‐scale synthesis of well‐defined nanocatalysts, paving the way for applications in water electrolyzers, fuel cells, and metal‐air batteries.</description><subject>Atomic structure</subject><subject>Catalysts</subject><subject>Clean energy</subject><subject>Crystallization</subject><subject>Electrocatalysts</subject><subject>Electronic properties</subject><subject>Electronic structure</subject><subject>Energy storage</subject><subject>Hydroxides</subject><subject>Intermetallic compounds</subject><subject>Iron compounds</subject><subject>Molybdates</subject><subject>Nanocrystals</subject><subject>Nanorods</subject><subject>Nanostructure</subject><subject>Nickel compounds</subject><subject>nickel‐iron</subject><subject>Oxidation</subject><subject>oxygen evolution reaction</subject><subject>Oxygen evolution reactions</subject><subject>Precipitates</subject><subject>Surface structure</subject><subject>Synthesis</subject><subject>X‐ray absorption spectra</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkb9u2zAQxomgRewmWTMWBLpksXsUKZEcC-dPC7g14CTISFDU2ZFBS65otVWmPkKeMU9S2k5cIEuWu8N3v_uAw0fIKYMhA0g-h6X3wwQSDirV4oD0Wcb4IFOJfrefGfTIhxAWAJwlQh6SHlcsTbQUffJwaV3pkdqqoFcNYkWvu2p9j6EMtJ7RO_T-6e_jOc7KCgv6w1a1a7qwtp5O_nTziF_8qn27LuuKjmyU4y7QvKNTu9EiNtrhvnzYKnSK89Zvx2PyfmZ9wJPnfkRuLy9uRl8H48nVt9GX8cBxyUWsIi9YDol0KouFM3CpLiDLtJa8ECwVWaFRg1BKZdZxxNyB04XiMs8l8iNytvNdNfXPFsPaLMvg4mO2wroNJtEgmU4zJSL66RW6qNsmvhEMh1Qz0EpCpIY7yjV1CA3OzKopl7bpDAOzScVsUjH7VOLBx2fbNl9iscdfYoiA3gG_YxbdG3bm-vt4_N_8H_-om2s</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Jiang, Wulyu</creator><creator>Xia, Lu</creator><creator>Ferreira Gomes, Bruna</creator><creator>Haumann, Michael</creator><creator>Dau, Holger</creator><creator>Roth, Christina</creator><creator>Lehnert, Werner</creator><creator>Shviro, Meital</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9494-0233</orcidid></search><sort><creationdate>20240501</creationdate><title>Facile and Green Synthesis of Well‐Defined Nanocrystal Oxygen Evolution Catalysts by Rational Crystallization Regulation</title><author>Jiang, Wulyu ; Xia, Lu ; Ferreira Gomes, Bruna ; Haumann, Michael ; Dau, Holger ; Roth, Christina ; Lehnert, Werner ; Shviro, Meital</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3734-c34bd1b027c8627c310c59d0669973d41546d9e9048886ac3eebc0c9d837bb7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atomic structure</topic><topic>Catalysts</topic><topic>Clean energy</topic><topic>Crystallization</topic><topic>Electrocatalysts</topic><topic>Electronic properties</topic><topic>Electronic structure</topic><topic>Energy storage</topic><topic>Hydroxides</topic><topic>Intermetallic compounds</topic><topic>Iron compounds</topic><topic>Molybdates</topic><topic>Nanocrystals</topic><topic>Nanorods</topic><topic>Nanostructure</topic><topic>Nickel compounds</topic><topic>nickel‐iron</topic><topic>Oxidation</topic><topic>oxygen evolution reaction</topic><topic>Oxygen evolution reactions</topic><topic>Precipitates</topic><topic>Surface structure</topic><topic>Synthesis</topic><topic>X‐ray absorption spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Wulyu</creatorcontrib><creatorcontrib>Xia, Lu</creatorcontrib><creatorcontrib>Ferreira Gomes, Bruna</creatorcontrib><creatorcontrib>Haumann, Michael</creatorcontrib><creatorcontrib>Dau, Holger</creatorcontrib><creatorcontrib>Roth, Christina</creatorcontrib><creatorcontrib>Lehnert, Werner</creatorcontrib><creatorcontrib>Shviro, Meital</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Wulyu</au><au>Xia, Lu</au><au>Ferreira Gomes, Bruna</au><au>Haumann, Michael</au><au>Dau, Holger</au><au>Roth, Christina</au><au>Lehnert, Werner</au><au>Shviro, Meital</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facile and Green Synthesis of Well‐Defined Nanocrystal Oxygen Evolution Catalysts by Rational Crystallization Regulation</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>20</volume><issue>21</issue><spage>e2308594</spage><epage>n/a</epage><pages>e2308594-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>The development of catalysts for an economical and efficient oxygen evolution reaction (OER) is critical for clean and sustainable energy storage and conversion. Nickel–iron‐based (NiFe) nanostructures are widely investigated as active OER catalysts and especially shape‐controlled nanocrystals exhibit optimized surface structure and electronic properties. However, the structural control from amorphous to well‐defined crystals is usually time‐consuming and requires multiple stages. Here, a universal two‐step precipitation‐hydrothermal approach is reported to prepare a series of NiFe‐based nanocrystals (e.g., hydroxides, sulfides, and molybdates) from amorphous precipitates. Their morphology and evolution of atomic and electronic structure during this process are studied using conclusive microscopy and spectroscopy techniques. The short‐term, additive‐free, and low‐cost method allows for the control of the crystallinity of the materials and facilitates the generation of nanosheets, nanorods, or nano‐octahedra with excellent water oxidation activity. The NiFe‐based crystalline catalysts exhibit slightly compromised initial activity but more robust long‐term stability than their amorphous counterparts during electrochemical operation. This facile, reliable, and universal synthesis method is promising in strategies for fabricating NiFe‐based nanostructures as efficient and economically valuable OER electrocatalysts.
A straightforward method is developed for synthesizing diverse transition metal‐based nanocrystals as catalysts for alkaline water electrolysis. Hydrothermal treatment of NiFe‐based hydroxides, sulfides, and molybdates produces nanosheets, nano‐octahedra, and nanorods with enhanced crystallinity. This adaptable, addictive‐free method allows large‐scale synthesis of well‐defined nanocatalysts, paving the way for applications in water electrolyzers, fuel cells, and metal‐air batteries.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38152974</pmid><doi>10.1002/smll.202308594</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9494-0233</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2024-05, Vol.20 (21), p.e2308594-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2907195684 |
source | Wiley Online Library All Journals |
subjects | Atomic structure Catalysts Clean energy Crystallization Electrocatalysts Electronic properties Electronic structure Energy storage Hydroxides Intermetallic compounds Iron compounds Molybdates Nanocrystals Nanorods Nanostructure Nickel compounds nickel‐iron Oxidation oxygen evolution reaction Oxygen evolution reactions Precipitates Surface structure Synthesis X‐ray absorption spectra |
title | Facile and Green Synthesis of Well‐Defined Nanocrystal Oxygen Evolution Catalysts by Rational Crystallization Regulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A02%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facile%20and%20Green%20Synthesis%20of%20Well%E2%80%90Defined%20Nanocrystal%20Oxygen%20Evolution%20Catalysts%20by%20Rational%20Crystallization%20Regulation&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Jiang,%20Wulyu&rft.date=2024-05-01&rft.volume=20&rft.issue=21&rft.spage=e2308594&rft.epage=n/a&rft.pages=e2308594-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202308594&rft_dat=%3Cproquest_cross%3E2907195684%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3059109870&rft_id=info:pmid/38152974&rfr_iscdi=true |