Steady and traveling flows of a power-law liquid over an incline

The slow flow of thin liquid films on solid surfaces is an important phenomenon in nature and in industrial processes, and an intensive effort has been made to investigate it. So far research has been focused mainly on Newtonian fluids, notwithstanding that often in the real situations as well as in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of non-Newtonian fluid mechanics 2004-03, Vol.118 (1), p.57-64
Hauptverfasser: Perazzo, Carlos A., Gratton, Julio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 64
container_issue 1
container_start_page 57
container_title Journal of non-Newtonian fluid mechanics
container_volume 118
creator Perazzo, Carlos A.
Gratton, Julio
description The slow flow of thin liquid films on solid surfaces is an important phenomenon in nature and in industrial processes, and an intensive effort has been made to investigate it. So far research has been focused mainly on Newtonian fluids, notwithstanding that often in the real situations as well as in the experiments, the rheology of the involved liquid is non-Newtonian. In this paper we investigate within the lubrication approximation the family of traveling wave solutions describing the flow of a power-law liquid on an incline. We derive general formulae for the traveling waves, that can be of several kinds according to the value of the propagation velocity c and of an integration constant j 0 related to the difference between c and the averaged velocity of the fluid u. There are exactly 17 different kinds of solutions. Five of them are the steady solutions ( c=0). In addition there are eight solutions that correspond to different downslope traveling waves, and four that describe waves traveling upslope.
doi_str_mv 10.1016/j.jnnfm.2004.02.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29066944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S037702570400045X</els_id><sourcerecordid>28071091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-3c9a3e3d44e5724255e3f83311266fd07f44f69bacb705fdcf77bb19960785323</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEuXjF7B4gS3hbCd2MiCBKr6kSgzAbDnOGTlKk9ZOW_Xfk9JKbHDLLc_73ukh5IpByoDJ2yZtus7NUw6QpcBTAHFEJqxQIuFSsGMyAaFUAjxXp-QsxgbGyYWckPv3AU29paar6RDMGlvffVHX9ptIe0cNXfQbDElrNrT1y5Wvab_GMOLUd3Zk8YKcONNGvDzsc_L59PgxfUlmb8-v04dZYkUphkTY0ggUdZZhrnjG8xyFK4RgjEvpalAuy5wsK2MrBbmrrVOqqlhZSlBFLrg4Jzf73kXolyuMg577aLFtTYf9KmpegpRllv0PFqAYlGwExR60oY8xoNOL4OcmbDUDvdOqG_2jVe-0auB61Dqmrg_1JlrTumA66-NvNFeSSbl7427P4Shl7THoaD12Fmsf0A667v2fd74BOl2NEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28071091</pqid></control><display><type>article</type><title>Steady and traveling flows of a power-law liquid over an incline</title><source>Elsevier ScienceDirect Journals Collection</source><creator>Perazzo, Carlos A. ; Gratton, Julio</creator><creatorcontrib>Perazzo, Carlos A. ; Gratton, Julio</creatorcontrib><description>The slow flow of thin liquid films on solid surfaces is an important phenomenon in nature and in industrial processes, and an intensive effort has been made to investigate it. So far research has been focused mainly on Newtonian fluids, notwithstanding that often in the real situations as well as in the experiments, the rheology of the involved liquid is non-Newtonian. In this paper we investigate within the lubrication approximation the family of traveling wave solutions describing the flow of a power-law liquid on an incline. We derive general formulae for the traveling waves, that can be of several kinds according to the value of the propagation velocity c and of an integration constant j 0 related to the difference between c and the averaged velocity of the fluid u. There are exactly 17 different kinds of solutions. Five of them are the steady solutions ( c=0). In addition there are eight solutions that correspond to different downslope traveling waves, and four that describe waves traveling upslope.</description><identifier>ISSN: 0377-0257</identifier><identifier>EISSN: 1873-2631</identifier><identifier>DOI: 10.1016/j.jnnfm.2004.02.003</identifier><identifier>CODEN: JNFMDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Gravity currents ; Hydrodynamic waves ; Non-newtonian fluid flows ; Physics ; Power-law liquid ; Traveling waves</subject><ispartof>Journal of non-Newtonian fluid mechanics, 2004-03, Vol.118 (1), p.57-64</ispartof><rights>2004 Elsevier B.V.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-3c9a3e3d44e5724255e3f83311266fd07f44f69bacb705fdcf77bb19960785323</citedby><cites>FETCH-LOGICAL-c393t-3c9a3e3d44e5724255e3f83311266fd07f44f69bacb705fdcf77bb19960785323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S037702570400045X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15761664$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Perazzo, Carlos A.</creatorcontrib><creatorcontrib>Gratton, Julio</creatorcontrib><title>Steady and traveling flows of a power-law liquid over an incline</title><title>Journal of non-Newtonian fluid mechanics</title><description>The slow flow of thin liquid films on solid surfaces is an important phenomenon in nature and in industrial processes, and an intensive effort has been made to investigate it. So far research has been focused mainly on Newtonian fluids, notwithstanding that often in the real situations as well as in the experiments, the rheology of the involved liquid is non-Newtonian. In this paper we investigate within the lubrication approximation the family of traveling wave solutions describing the flow of a power-law liquid on an incline. We derive general formulae for the traveling waves, that can be of several kinds according to the value of the propagation velocity c and of an integration constant j 0 related to the difference between c and the averaged velocity of the fluid u. There are exactly 17 different kinds of solutions. Five of them are the steady solutions ( c=0). In addition there are eight solutions that correspond to different downslope traveling waves, and four that describe waves traveling upslope.</description><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Gravity currents</subject><subject>Hydrodynamic waves</subject><subject>Non-newtonian fluid flows</subject><subject>Physics</subject><subject>Power-law liquid</subject><subject>Traveling waves</subject><issn>0377-0257</issn><issn>1873-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEuXjF7B4gS3hbCd2MiCBKr6kSgzAbDnOGTlKk9ZOW_Xfk9JKbHDLLc_73ukh5IpByoDJ2yZtus7NUw6QpcBTAHFEJqxQIuFSsGMyAaFUAjxXp-QsxgbGyYWckPv3AU29paar6RDMGlvffVHX9ptIe0cNXfQbDElrNrT1y5Wvab_GMOLUd3Zk8YKcONNGvDzsc_L59PgxfUlmb8-v04dZYkUphkTY0ggUdZZhrnjG8xyFK4RgjEvpalAuy5wsK2MrBbmrrVOqqlhZSlBFLrg4Jzf73kXolyuMg577aLFtTYf9KmpegpRllv0PFqAYlGwExR60oY8xoNOL4OcmbDUDvdOqG_2jVe-0auB61Dqmrg_1JlrTumA66-NvNFeSSbl7427P4Shl7THoaD12Fmsf0A667v2fd74BOl2NEQ</recordid><startdate>20040320</startdate><enddate>20040320</enddate><creator>Perazzo, Carlos A.</creator><creator>Gratton, Julio</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>H8D</scope></search><sort><creationdate>20040320</creationdate><title>Steady and traveling flows of a power-law liquid over an incline</title><author>Perazzo, Carlos A. ; Gratton, Julio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-3c9a3e3d44e5724255e3f83311266fd07f44f69bacb705fdcf77bb19960785323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Gravity currents</topic><topic>Hydrodynamic waves</topic><topic>Non-newtonian fluid flows</topic><topic>Physics</topic><topic>Power-law liquid</topic><topic>Traveling waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perazzo, Carlos A.</creatorcontrib><creatorcontrib>Gratton, Julio</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aerospace Database</collection><jtitle>Journal of non-Newtonian fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perazzo, Carlos A.</au><au>Gratton, Julio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Steady and traveling flows of a power-law liquid over an incline</atitle><jtitle>Journal of non-Newtonian fluid mechanics</jtitle><date>2004-03-20</date><risdate>2004</risdate><volume>118</volume><issue>1</issue><spage>57</spage><epage>64</epage><pages>57-64</pages><issn>0377-0257</issn><eissn>1873-2631</eissn><coden>JNFMDI</coden><abstract>The slow flow of thin liquid films on solid surfaces is an important phenomenon in nature and in industrial processes, and an intensive effort has been made to investigate it. So far research has been focused mainly on Newtonian fluids, notwithstanding that often in the real situations as well as in the experiments, the rheology of the involved liquid is non-Newtonian. In this paper we investigate within the lubrication approximation the family of traveling wave solutions describing the flow of a power-law liquid on an incline. We derive general formulae for the traveling waves, that can be of several kinds according to the value of the propagation velocity c and of an integration constant j 0 related to the difference between c and the averaged velocity of the fluid u. There are exactly 17 different kinds of solutions. Five of them are the steady solutions ( c=0). In addition there are eight solutions that correspond to different downslope traveling waves, and four that describe waves traveling upslope.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnnfm.2004.02.003</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-0257
ispartof Journal of non-Newtonian fluid mechanics, 2004-03, Vol.118 (1), p.57-64
issn 0377-0257
1873-2631
language eng
recordid cdi_proquest_miscellaneous_29066944
source Elsevier ScienceDirect Journals Collection
subjects Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Gravity currents
Hydrodynamic waves
Non-newtonian fluid flows
Physics
Power-law liquid
Traveling waves
title Steady and traveling flows of a power-law liquid over an incline
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A00%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Steady%20and%20traveling%20flows%20of%20a%20power-law%20liquid%20over%20an%20incline&rft.jtitle=Journal%20of%20non-Newtonian%20fluid%20mechanics&rft.au=Perazzo,%20Carlos%20A.&rft.date=2004-03-20&rft.volume=118&rft.issue=1&rft.spage=57&rft.epage=64&rft.pages=57-64&rft.issn=0377-0257&rft.eissn=1873-2631&rft.coden=JNFMDI&rft_id=info:doi/10.1016/j.jnnfm.2004.02.003&rft_dat=%3Cproquest_cross%3E28071091%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28071091&rft_id=info:pmid/&rft_els_id=S037702570400045X&rfr_iscdi=true