Three-dimensional trajectory estimation from image position and velocity
A recursive algorithm for estimating the three-dimensional trajectory and structure of a moving rigid object in an image sequence has been previously developed by Broida, Chandrashekhar, and Chellappa [1990]. Since then, steady advances have occurred in the calculation of optical flow. This work imp...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on aerospace and electronic systems 2000-10, Vol.36 (4), p.1075-1089 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1089 |
---|---|
container_issue | 4 |
container_start_page | 1075 |
container_title | IEEE transactions on aerospace and electronic systems |
container_volume | 36 |
creator | Blostein, S.D. Zhao, L. Chann, R.M. |
description | A recursive algorithm for estimating the three-dimensional trajectory and structure of a moving rigid object in an image sequence has been previously developed by Broida, Chandrashekhar, and Chellappa [1990]. Since then, steady advances have occurred in the calculation of optical flow. This work improves 3D motion trajectory and structure estimation by incorporating optical flow into the estimation framework. The new solution combines optical flow and feature point measurements and determines their statistical relationship. The feasibility of a hybrid feature point/optical flow algorithm, demonstrated through detailed simulation on synthetic and real image sequences, significantly lowers bias and mean squared error in trajectory estimation over the feature-based approach. |
doi_str_mv | 10.1109/7.892659 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_29065779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>892659</ieee_id><sourcerecordid>28686804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-4bdbef493a1839bbad7b174151b9f12e64ad4c4c4e59ba219a3889262ee9c9d83</originalsourceid><addsrcrecordid>eNqF0UFLwzAUAOAgCs4pePZUPIiXzqRNmryjDHXCwMs8h7R91Yy2mUkn7N-b2eHBy3iH8F4-Hsl7hFwzOmOMwoOcKcgKASdkwoSQKRQ0PyUTSplKIRPsnFyEsI4pVzyfkMXq0yOmte2wD9b1pk0Gb9ZYDc7vEgyD7cwQ60njXZfE5AOTjQv2t2b6OvnG1lV22F2Ss8a0Aa8O55S8Pz-t5ot0-fbyOn9cplVe8CHlZV1iwyE3TOVQlqaWJZOcCVZCwzIsuKl5FQMFlCZjYHK1_1CGCBXUKp-Su7HvxruvbXyg7myosG1Nj24bdAa0EFLCcaiKGJQfhzK2A84ivP0H127r48iCVoorJWghI7ofUeVdCB4bvfFxbH6nGdX7DWmpxw1FejNSi4h_7HD5A9vjizE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884885067</pqid></control><display><type>article</type><title>Three-dimensional trajectory estimation from image position and velocity</title><source>IEEE Electronic Library (IEL)</source><creator>Blostein, S.D. ; Zhao, L. ; Chann, R.M.</creator><creatorcontrib>Blostein, S.D. ; Zhao, L. ; Chann, R.M.</creatorcontrib><description>A recursive algorithm for estimating the three-dimensional trajectory and structure of a moving rigid object in an image sequence has been previously developed by Broida, Chandrashekhar, and Chellappa [1990]. Since then, steady advances have occurred in the calculation of optical flow. This work improves 3D motion trajectory and structure estimation by incorporating optical flow into the estimation framework. The new solution combines optical flow and feature point measurements and determines their statistical relationship. The feasibility of a hybrid feature point/optical flow algorithm, demonstrated through detailed simulation on synthetic and real image sequences, significantly lowers bias and mean squared error in trajectory estimation over the feature-based approach.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/7.892659</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Estimation error ; Fluid flow measurement ; Image motion analysis ; Image sequences ; Motion estimation ; Nonlinear optics ; Optical computing ; Optical devices ; Optical filters ; Recursive estimation</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2000-10, Vol.36 (4), p.1075-1089</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-4bdbef493a1839bbad7b174151b9f12e64ad4c4c4e59ba219a3889262ee9c9d83</citedby><cites>FETCH-LOGICAL-c364t-4bdbef493a1839bbad7b174151b9f12e64ad4c4c4e59ba219a3889262ee9c9d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/892659$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/892659$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Blostein, S.D.</creatorcontrib><creatorcontrib>Zhao, L.</creatorcontrib><creatorcontrib>Chann, R.M.</creatorcontrib><title>Three-dimensional trajectory estimation from image position and velocity</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>A recursive algorithm for estimating the three-dimensional trajectory and structure of a moving rigid object in an image sequence has been previously developed by Broida, Chandrashekhar, and Chellappa [1990]. Since then, steady advances have occurred in the calculation of optical flow. This work improves 3D motion trajectory and structure estimation by incorporating optical flow into the estimation framework. The new solution combines optical flow and feature point measurements and determines their statistical relationship. The feasibility of a hybrid feature point/optical flow algorithm, demonstrated through detailed simulation on synthetic and real image sequences, significantly lowers bias and mean squared error in trajectory estimation over the feature-based approach.</description><subject>Estimation error</subject><subject>Fluid flow measurement</subject><subject>Image motion analysis</subject><subject>Image sequences</subject><subject>Motion estimation</subject><subject>Nonlinear optics</subject><subject>Optical computing</subject><subject>Optical devices</subject><subject>Optical filters</subject><subject>Recursive estimation</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0UFLwzAUAOAgCs4pePZUPIiXzqRNmryjDHXCwMs8h7R91Yy2mUkn7N-b2eHBy3iH8F4-Hsl7hFwzOmOMwoOcKcgKASdkwoSQKRQ0PyUTSplKIRPsnFyEsI4pVzyfkMXq0yOmte2wD9b1pk0Gb9ZYDc7vEgyD7cwQ60njXZfE5AOTjQv2t2b6OvnG1lV22F2Ss8a0Aa8O55S8Pz-t5ot0-fbyOn9cplVe8CHlZV1iwyE3TOVQlqaWJZOcCVZCwzIsuKl5FQMFlCZjYHK1_1CGCBXUKp-Su7HvxruvbXyg7myosG1Nj24bdAa0EFLCcaiKGJQfhzK2A84ivP0H127r48iCVoorJWghI7ofUeVdCB4bvfFxbH6nGdX7DWmpxw1FejNSi4h_7HD5A9vjizE</recordid><startdate>200010</startdate><enddate>200010</enddate><creator>Blostein, S.D.</creator><creator>Zhao, L.</creator><creator>Chann, R.M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>200010</creationdate><title>Three-dimensional trajectory estimation from image position and velocity</title><author>Blostein, S.D. ; Zhao, L. ; Chann, R.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-4bdbef493a1839bbad7b174151b9f12e64ad4c4c4e59ba219a3889262ee9c9d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Estimation error</topic><topic>Fluid flow measurement</topic><topic>Image motion analysis</topic><topic>Image sequences</topic><topic>Motion estimation</topic><topic>Nonlinear optics</topic><topic>Optical computing</topic><topic>Optical devices</topic><topic>Optical filters</topic><topic>Recursive estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blostein, S.D.</creatorcontrib><creatorcontrib>Zhao, L.</creatorcontrib><creatorcontrib>Chann, R.M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Blostein, S.D.</au><au>Zhao, L.</au><au>Chann, R.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional trajectory estimation from image position and velocity</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2000-10</date><risdate>2000</risdate><volume>36</volume><issue>4</issue><spage>1075</spage><epage>1089</epage><pages>1075-1089</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>A recursive algorithm for estimating the three-dimensional trajectory and structure of a moving rigid object in an image sequence has been previously developed by Broida, Chandrashekhar, and Chellappa [1990]. Since then, steady advances have occurred in the calculation of optical flow. This work improves 3D motion trajectory and structure estimation by incorporating optical flow into the estimation framework. The new solution combines optical flow and feature point measurements and determines their statistical relationship. The feasibility of a hybrid feature point/optical flow algorithm, demonstrated through detailed simulation on synthetic and real image sequences, significantly lowers bias and mean squared error in trajectory estimation over the feature-based approach.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/7.892659</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9251 |
ispartof | IEEE transactions on aerospace and electronic systems, 2000-10, Vol.36 (4), p.1075-1089 |
issn | 0018-9251 1557-9603 |
language | eng |
recordid | cdi_proquest_miscellaneous_29065779 |
source | IEEE Electronic Library (IEL) |
subjects | Estimation error Fluid flow measurement Image motion analysis Image sequences Motion estimation Nonlinear optics Optical computing Optical devices Optical filters Recursive estimation |
title | Three-dimensional trajectory estimation from image position and velocity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A09%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20trajectory%20estimation%20from%20image%20position%20and%20velocity&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Blostein,%20S.D.&rft.date=2000-10&rft.volume=36&rft.issue=4&rft.spage=1075&rft.epage=1089&rft.pages=1075-1089&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/7.892659&rft_dat=%3Cproquest_RIE%3E28686804%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884885067&rft_id=info:pmid/&rft_ieee_id=892659&rfr_iscdi=true |