Semantic modeling of natural scenes for content-based image retrieval
In this paper, we present a novel image representation that renders it possible to access natural scenes by local semantic description. Our work is motivated by the continuing effort in content-based image retrieval to extract and to model the semantic content of images. The basic idea of the semant...
Gespeichert in:
Veröffentlicht in: | International journal of computer vision 2007-04, Vol.72 (2), p.133-157 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 157 |
---|---|
container_issue | 2 |
container_start_page | 133 |
container_title | International journal of computer vision |
container_volume | 72 |
creator | VOGEL, Julia SCHIELE, Bernt |
description | In this paper, we present a novel image representation that renders it possible to access natural scenes by local semantic description. Our work is motivated by the continuing effort in content-based image retrieval to extract and to model the semantic content of images. The basic idea of the semantic modeling is to classify local image regions into semantic concept classes such as water, rocks, or foliage. Images are represented through the frequency of occurrence of these local concepts. Through extensive experiments, we demonstrate that the image representation is well suited for modeling the semantic content of heterogenous scene categories, and thus for categorization and retrieval. The image representation also allows us to rank natural scenes according to their semantic similarity relative to certain scene categories. Based on human ranking data, we learn a perceptually plausible distance measure that leads to a high correlation between the human and the automatically obtained typicality ranking. This result is especially valuable for content-based image retrieval where the goal is to present retrieval results in descending semantic similarity from the query.[PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/s11263-006-8614-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29064349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2793856611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-4192d44987d13ceaf98cdd53c31dbe8bfcf364764bd1293dbfe9ac510be3c0453</originalsourceid><addsrcrecordid>eNpdkEtLAzEUhYMoWB8_wN2A6C567ySTJksp9QGCC3UdMsmNjEwzNZkK_nuntCC4upvvHM79GLtAuEGA-W1BrJXgAIprhZLjAZthMxccJTSHbAamBt4og8fspJRPAKh1LWZs-Uorl8bOV6shUN-lj2qIVXLjJru-Kp4SlSoOufJDGimNvHWFQtWt3AdVmcbc0bfrz9hRdH2h8_09Ze_3y7fFI39-eXha3D1zLwFGLtHUQUqj5wGFJxeN9iE0wgsMLek2-iiUnCvZBqyNCG0k43yD0JLwIBtxyq53ves8fG2ojHbVTRv73iUaNsXWBpQU0kzg5T_wc9jkNG2ziChULbWCicId5fNQSqZo13n6LP9YBLvVanda7aTVbrVanDJX-2ZXvOtjdsl35S-otQChtPgFwQ93WQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1113624860</pqid></control><display><type>article</type><title>Semantic modeling of natural scenes for content-based image retrieval</title><source>SpringerLink Journals - AutoHoldings</source><creator>VOGEL, Julia ; SCHIELE, Bernt</creator><creatorcontrib>VOGEL, Julia ; SCHIELE, Bernt</creatorcontrib><description>In this paper, we present a novel image representation that renders it possible to access natural scenes by local semantic description. Our work is motivated by the continuing effort in content-based image retrieval to extract and to model the semantic content of images. The basic idea of the semantic modeling is to classify local image regions into semantic concept classes such as water, rocks, or foliage. Images are represented through the frequency of occurrence of these local concepts. Through extensive experiments, we demonstrate that the image representation is well suited for modeling the semantic content of heterogenous scene categories, and thus for categorization and retrieval. The image representation also allows us to rank natural scenes according to their semantic similarity relative to certain scene categories. Based on human ranking data, we learn a perceptually plausible distance measure that leads to a high correlation between the human and the automatically obtained typicality ranking. This result is especially valuable for content-based image retrieval where the goal is to present retrieval results in descending semantic similarity from the query.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0920-5691</identifier><identifier>EISSN: 1573-1405</identifier><identifier>DOI: 10.1007/s11263-006-8614-1</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Image retrieval ; Pattern recognition. Digital image processing. Computational geometry ; Semantics ; Studies</subject><ispartof>International journal of computer vision, 2007-04, Vol.72 (2), p.133-157</ispartof><rights>2007 INIST-CNRS</rights><rights>Springer Science + Business Media, LLC 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-4192d44987d13ceaf98cdd53c31dbe8bfcf364764bd1293dbfe9ac510be3c0453</citedby><cites>FETCH-LOGICAL-c400t-4192d44987d13ceaf98cdd53c31dbe8bfcf364764bd1293dbfe9ac510be3c0453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18830368$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>VOGEL, Julia</creatorcontrib><creatorcontrib>SCHIELE, Bernt</creatorcontrib><title>Semantic modeling of natural scenes for content-based image retrieval</title><title>International journal of computer vision</title><description>In this paper, we present a novel image representation that renders it possible to access natural scenes by local semantic description. Our work is motivated by the continuing effort in content-based image retrieval to extract and to model the semantic content of images. The basic idea of the semantic modeling is to classify local image regions into semantic concept classes such as water, rocks, or foliage. Images are represented through the frequency of occurrence of these local concepts. Through extensive experiments, we demonstrate that the image representation is well suited for modeling the semantic content of heterogenous scene categories, and thus for categorization and retrieval. The image representation also allows us to rank natural scenes according to their semantic similarity relative to certain scene categories. Based on human ranking data, we learn a perceptually plausible distance measure that leads to a high correlation between the human and the automatically obtained typicality ranking. This result is especially valuable for content-based image retrieval where the goal is to present retrieval results in descending semantic similarity from the query.[PUBLICATION ABSTRACT]</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Image retrieval</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Semantics</subject><subject>Studies</subject><issn>0920-5691</issn><issn>1573-1405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkEtLAzEUhYMoWB8_wN2A6C567ySTJksp9QGCC3UdMsmNjEwzNZkK_nuntCC4upvvHM79GLtAuEGA-W1BrJXgAIprhZLjAZthMxccJTSHbAamBt4og8fspJRPAKh1LWZs-Uorl8bOV6shUN-lj2qIVXLjJru-Kp4SlSoOufJDGimNvHWFQtWt3AdVmcbc0bfrz9hRdH2h8_09Ze_3y7fFI39-eXha3D1zLwFGLtHUQUqj5wGFJxeN9iE0wgsMLek2-iiUnCvZBqyNCG0k43yD0JLwIBtxyq53ves8fG2ojHbVTRv73iUaNsXWBpQU0kzg5T_wc9jkNG2ziChULbWCicId5fNQSqZo13n6LP9YBLvVanda7aTVbrVanDJX-2ZXvOtjdsl35S-otQChtPgFwQ93WQ</recordid><startdate>20070401</startdate><enddate>20070401</enddate><creator>VOGEL, Julia</creator><creator>SCHIELE, Bernt</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20070401</creationdate><title>Semantic modeling of natural scenes for content-based image retrieval</title><author>VOGEL, Julia ; SCHIELE, Bernt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-4192d44987d13ceaf98cdd53c31dbe8bfcf364764bd1293dbfe9ac510be3c0453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Image retrieval</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Semantics</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>VOGEL, Julia</creatorcontrib><creatorcontrib>SCHIELE, Bernt</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of computer vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>VOGEL, Julia</au><au>SCHIELE, Bernt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semantic modeling of natural scenes for content-based image retrieval</atitle><jtitle>International journal of computer vision</jtitle><date>2007-04-01</date><risdate>2007</risdate><volume>72</volume><issue>2</issue><spage>133</spage><epage>157</epage><pages>133-157</pages><issn>0920-5691</issn><eissn>1573-1405</eissn><abstract>In this paper, we present a novel image representation that renders it possible to access natural scenes by local semantic description. Our work is motivated by the continuing effort in content-based image retrieval to extract and to model the semantic content of images. The basic idea of the semantic modeling is to classify local image regions into semantic concept classes such as water, rocks, or foliage. Images are represented through the frequency of occurrence of these local concepts. Through extensive experiments, we demonstrate that the image representation is well suited for modeling the semantic content of heterogenous scene categories, and thus for categorization and retrieval. The image representation also allows us to rank natural scenes according to their semantic similarity relative to certain scene categories. Based on human ranking data, we learn a perceptually plausible distance measure that leads to a high correlation between the human and the automatically obtained typicality ranking. This result is especially valuable for content-based image retrieval where the goal is to present retrieval results in descending semantic similarity from the query.[PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/s11263-006-8614-1</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-5691 |
ispartof | International journal of computer vision, 2007-04, Vol.72 (2), p.133-157 |
issn | 0920-5691 1573-1405 |
language | eng |
recordid | cdi_proquest_miscellaneous_29064349 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Exact sciences and technology Image retrieval Pattern recognition. Digital image processing. Computational geometry Semantics Studies |
title | Semantic modeling of natural scenes for content-based image retrieval |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A46%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semantic%20modeling%20of%20natural%20scenes%20for%20content-based%20image%20retrieval&rft.jtitle=International%20journal%20of%20computer%20vision&rft.au=VOGEL,%20Julia&rft.date=2007-04-01&rft.volume=72&rft.issue=2&rft.spage=133&rft.epage=157&rft.pages=133-157&rft.issn=0920-5691&rft.eissn=1573-1405&rft_id=info:doi/10.1007/s11263-006-8614-1&rft_dat=%3Cproquest_cross%3E2793856611%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1113624860&rft_id=info:pmid/&rfr_iscdi=true |