Estimating Nonlinearity Using Volterra Kernels in Feedback with Linear Models

Aeroelastic dynamics must be accurately known to ensure safe and efficient flight testing. Unfortunately, most models of aircraft systems typically describe only the linear dynamics. These models are inadequate for predicting behaviors, such as limit cycle oscillations, resulting from nonlinearities...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2005-01, Vol.39 (1-2), p.3-23
Hauptverfasser: Lind, Rick, Prazenica, Richard J, Brenner, Martin J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23
container_issue 1-2
container_start_page 3
container_title Nonlinear dynamics
container_volume 39
creator Lind, Rick
Prazenica, Richard J
Brenner, Martin J
description Aeroelastic dynamics must be accurately known to ensure safe and efficient flight testing. Unfortunately, most models of aircraft systems typically describe only the linear dynamics. These models are inadequate for predicting behaviors, such as limit cycle oscillations, resulting from nonlinearities. This paper presents an approach to augment a linear model by identifying associated nonlinear operators. Essentially, the difference between a flight data measurement and a simulated measurement indicates the unmodeled dynamics. Volterra kernels are computed to represent the difference in measurement and, consequently, represent the unmodeled dynamics. The approach is applied to a nonlinear pitch–plunge system for which only a linear model is assumed available. The method is able to characterize errors due to incorrect parameters in the linear model and errors due to unmodeled nonlinearities of the dynamics.
doi_str_mv 10.1007/s11071-005-1906-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29063203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29063203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-b5f55ecd5b15bc7445ba8bdf1d83679e7a8826269b3f8eb0675a79aba8b22a0d3</originalsourceid><addsrcrecordid>eNpdkMFOwzAMhiMEEmPwANwiIXELOEnTtEc0bYDY4MLQblHSppDRNSPphPb2pIwTJ0v2Z-v3h9AlhRsKIG8jpSApARCElpATOEIjKiQnLC9Xx2gEJcsIlLA6RWcxrgGAMyhGaDGNvdvo3nXv-Nl3reusDq7f42UcWm--7W0IGj_Z0Nk2YtfhmbW10dUn_nb9B57_buCFr9P4HJ00uo324q-O0XI2fZ08kPnL_ePkbk4qDllPjGiEsFUtDBWmklkmjC5M3dC64LksrdRFwfKU3PCmsAZyKbQs9QAxpqHmY3R9uLsN_mtnY682Lla2bXVn_S4qlhSk_3gCr_6Ba78LXcqmGBNlJjIKNFH0QFXBxxhso7YhSQl7RUENetVBr0p61aBXAf8BGnFtVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259454101</pqid></control><display><type>article</type><title>Estimating Nonlinearity Using Volterra Kernels in Feedback with Linear Models</title><source>SpringerNature Journals</source><creator>Lind, Rick ; Prazenica, Richard J ; Brenner, Martin J</creator><creatorcontrib>Lind, Rick ; Prazenica, Richard J ; Brenner, Martin J</creatorcontrib><description>Aeroelastic dynamics must be accurately known to ensure safe and efficient flight testing. Unfortunately, most models of aircraft systems typically describe only the linear dynamics. These models are inadequate for predicting behaviors, such as limit cycle oscillations, resulting from nonlinearities. This paper presents an approach to augment a linear model by identifying associated nonlinear operators. Essentially, the difference between a flight data measurement and a simulated measurement indicates the unmodeled dynamics. Volterra kernels are computed to represent the difference in measurement and, consequently, represent the unmodeled dynamics. The approach is applied to a nonlinear pitch–plunge system for which only a linear model is assumed available. The method is able to characterize errors due to incorrect parameters in the linear model and errors due to unmodeled nonlinearities of the dynamics.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-005-1906-0</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Aeroelasticity ; Computer simulation ; Flight tests ; Kernels ; Limit cycle oscillations ; Nonlinearity</subject><ispartof>Nonlinear dynamics, 2005-01, Vol.39 (1-2), p.3-23</ispartof><rights>Nonlinear Dynamics is a copyright of Springer, (2005). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c304t-b5f55ecd5b15bc7445ba8bdf1d83679e7a8826269b3f8eb0675a79aba8b22a0d3</citedby><cites>FETCH-LOGICAL-c304t-b5f55ecd5b15bc7445ba8bdf1d83679e7a8826269b3f8eb0675a79aba8b22a0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lind, Rick</creatorcontrib><creatorcontrib>Prazenica, Richard J</creatorcontrib><creatorcontrib>Brenner, Martin J</creatorcontrib><title>Estimating Nonlinearity Using Volterra Kernels in Feedback with Linear Models</title><title>Nonlinear dynamics</title><description>Aeroelastic dynamics must be accurately known to ensure safe and efficient flight testing. Unfortunately, most models of aircraft systems typically describe only the linear dynamics. These models are inadequate for predicting behaviors, such as limit cycle oscillations, resulting from nonlinearities. This paper presents an approach to augment a linear model by identifying associated nonlinear operators. Essentially, the difference between a flight data measurement and a simulated measurement indicates the unmodeled dynamics. Volterra kernels are computed to represent the difference in measurement and, consequently, represent the unmodeled dynamics. The approach is applied to a nonlinear pitch–plunge system for which only a linear model is assumed available. The method is able to characterize errors due to incorrect parameters in the linear model and errors due to unmodeled nonlinearities of the dynamics.</description><subject>Aeroelasticity</subject><subject>Computer simulation</subject><subject>Flight tests</subject><subject>Kernels</subject><subject>Limit cycle oscillations</subject><subject>Nonlinearity</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkMFOwzAMhiMEEmPwANwiIXELOEnTtEc0bYDY4MLQblHSppDRNSPphPb2pIwTJ0v2Z-v3h9AlhRsKIG8jpSApARCElpATOEIjKiQnLC9Xx2gEJcsIlLA6RWcxrgGAMyhGaDGNvdvo3nXv-Nl3reusDq7f42UcWm--7W0IGj_Z0Nk2YtfhmbW10dUn_nb9B57_buCFr9P4HJ00uo324q-O0XI2fZ08kPnL_ePkbk4qDllPjGiEsFUtDBWmklkmjC5M3dC64LksrdRFwfKU3PCmsAZyKbQs9QAxpqHmY3R9uLsN_mtnY682Lla2bXVn_S4qlhSk_3gCr_6Ba78LXcqmGBNlJjIKNFH0QFXBxxhso7YhSQl7RUENetVBr0p61aBXAf8BGnFtVg</recordid><startdate>20050101</startdate><enddate>20050101</enddate><creator>Lind, Rick</creator><creator>Prazenica, Richard J</creator><creator>Brenner, Martin J</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20050101</creationdate><title>Estimating Nonlinearity Using Volterra Kernels in Feedback with Linear Models</title><author>Lind, Rick ; Prazenica, Richard J ; Brenner, Martin J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-b5f55ecd5b15bc7445ba8bdf1d83679e7a8826269b3f8eb0675a79aba8b22a0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Aeroelasticity</topic><topic>Computer simulation</topic><topic>Flight tests</topic><topic>Kernels</topic><topic>Limit cycle oscillations</topic><topic>Nonlinearity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lind, Rick</creatorcontrib><creatorcontrib>Prazenica, Richard J</creatorcontrib><creatorcontrib>Brenner, Martin J</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lind, Rick</au><au>Prazenica, Richard J</au><au>Brenner, Martin J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating Nonlinearity Using Volterra Kernels in Feedback with Linear Models</atitle><jtitle>Nonlinear dynamics</jtitle><date>2005-01-01</date><risdate>2005</risdate><volume>39</volume><issue>1-2</issue><spage>3</spage><epage>23</epage><pages>3-23</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>Aeroelastic dynamics must be accurately known to ensure safe and efficient flight testing. Unfortunately, most models of aircraft systems typically describe only the linear dynamics. These models are inadequate for predicting behaviors, such as limit cycle oscillations, resulting from nonlinearities. This paper presents an approach to augment a linear model by identifying associated nonlinear operators. Essentially, the difference between a flight data measurement and a simulated measurement indicates the unmodeled dynamics. Volterra kernels are computed to represent the difference in measurement and, consequently, represent the unmodeled dynamics. The approach is applied to a nonlinear pitch–plunge system for which only a linear model is assumed available. The method is able to characterize errors due to incorrect parameters in the linear model and errors due to unmodeled nonlinearities of the dynamics.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11071-005-1906-0</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2005-01, Vol.39 (1-2), p.3-23
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_miscellaneous_29063203
source SpringerNature Journals
subjects Aeroelasticity
Computer simulation
Flight tests
Kernels
Limit cycle oscillations
Nonlinearity
title Estimating Nonlinearity Using Volterra Kernels in Feedback with Linear Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A37%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20Nonlinearity%20Using%20Volterra%20Kernels%20in%20Feedback%20with%20Linear%20Models&rft.jtitle=Nonlinear%20dynamics&rft.au=Lind,%20Rick&rft.date=2005-01-01&rft.volume=39&rft.issue=1-2&rft.spage=3&rft.epage=23&rft.pages=3-23&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-005-1906-0&rft_dat=%3Cproquest_cross%3E29063203%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259454101&rft_id=info:pmid/&rfr_iscdi=true