Analyzing the correlation between quinolone-resistant Escherichia coli resistance rates and climate factors: A comprehensive analysis across 31 Chinese provinces

The increasing problem of bacterial resistance, particularly with quinolone-resistant Escherichia coli (QnR eco) poses a serious global health issue. We collected data on QnR eco resistance rates and detection frequencies from 2014 to 2021 via the China Antimicrobial Resistance Surveillance System,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental research 2024-03, Vol.245, p.117995-117995, Article 117995
Hauptverfasser: Zhao, Yi-Chang, Sun, Zhi-Hua, Xiao, Ming-Xuan, Li, Jia-Kai, Liu, Huai-yuan, Cai, Hua-Lin, Cao, Wei, Feng, Yu, Zhang, Bi-Kui, Yan, Miao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 117995
container_issue
container_start_page 117995
container_title Environmental research
container_volume 245
creator Zhao, Yi-Chang
Sun, Zhi-Hua
Xiao, Ming-Xuan
Li, Jia-Kai
Liu, Huai-yuan
Cai, Hua-Lin
Cao, Wei
Feng, Yu
Zhang, Bi-Kui
Yan, Miao
description The increasing problem of bacterial resistance, particularly with quinolone-resistant Escherichia coli (QnR eco) poses a serious global health issue. We collected data on QnR eco resistance rates and detection frequencies from 2014 to 2021 via the China Antimicrobial Resistance Surveillance System, complemented by meteorological and socioeconomic data from the China Statistical Yearbook and the China Meteorological Data Service Centre (CMDC). Comprehensive nonparametric testing and multivariate regression models were used in the analysis. Our analysis revealed significant regional differences in QnR eco resistance and detection rates across China. Along the Hu Huanyong Line, resistance rates varied markedly: 49.35 in the northwest, 54.40 on the line, and 52.30 in the southeast (P = 0.001). Detection rates also showed significant geographical variation, with notable differences between regions (P 
doi_str_mv 10.1016/j.envres.2023.117995
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2906177991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013935123027998</els_id><sourcerecordid>2906177991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-5e4066370d4bd2a51b45f73d07463a91c49060bdea30b79e1759b3ccd578dd553</originalsourceid><addsrcrecordid>eNqFkU9vEzEQxS0EoqHwDRDykcsGT2yvsxyQoqj8kSpxgbPltSeso403tZ1U5dvwTZmyLUc4WSP_3jzNe4y9BrEEAe27_RLTOWNZrsRKLgFM1-knbAGiaxvRafmULYQA2XRSwwV7UcqeRtBSPGcXcg1KGwkL9muT3Hj3M6YfvA7I_ZQzjq7GKfEe6y1i4jenmKZxStiQWyzVpcqvih8wRz9ER5ox8scvjzy7ioW7FLgf44EGvnO-Trm85xuCD8eMA6YSz0gQmZOQO5-nUrgEvh1iwoL8mKdzpHXlJXu2c2PBVw_vJfv-8erb9nNz_fXTl-3muvFKQW00KtG20oig-rByGnqld0YGYVQrXQdedaIVfUAnRW86BKO7XnoftFmHoLW8ZG_nveR8c8JS7SEWj-PoEk6nYiVl19I2tf4vuiIrMFQIEKpm9M-BGXf2mCmUfGdB2Pse7d7OPdr7Hu3cI8nePDic-gOGv6LH4gj4MANIkZwjZlt8RMorxIy-2jDFfzv8BoeGs7o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2906177991</pqid></control><display><type>article</type><title>Analyzing the correlation between quinolone-resistant Escherichia coli resistance rates and climate factors: A comprehensive analysis across 31 Chinese provinces</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Zhao, Yi-Chang ; Sun, Zhi-Hua ; Xiao, Ming-Xuan ; Li, Jia-Kai ; Liu, Huai-yuan ; Cai, Hua-Lin ; Cao, Wei ; Feng, Yu ; Zhang, Bi-Kui ; Yan, Miao</creator><creatorcontrib>Zhao, Yi-Chang ; Sun, Zhi-Hua ; Xiao, Ming-Xuan ; Li, Jia-Kai ; Liu, Huai-yuan ; Cai, Hua-Lin ; Cao, Wei ; Feng, Yu ; Zhang, Bi-Kui ; Yan, Miao</creatorcontrib><description>The increasing problem of bacterial resistance, particularly with quinolone-resistant Escherichia coli (QnR eco) poses a serious global health issue. We collected data on QnR eco resistance rates and detection frequencies from 2014 to 2021 via the China Antimicrobial Resistance Surveillance System, complemented by meteorological and socioeconomic data from the China Statistical Yearbook and the China Meteorological Data Service Centre (CMDC). Comprehensive nonparametric testing and multivariate regression models were used in the analysis. Our analysis revealed significant regional differences in QnR eco resistance and detection rates across China. Along the Hu Huanyong Line, resistance rates varied markedly: 49.35 in the northwest, 54.40 on the line, and 52.30 in the southeast (P = 0.001). Detection rates also showed significant geographical variation, with notable differences between regions (P &lt; 0.001). Climate types influenced these rates, with significant variability observed across different climates (P &lt; 0.001). Our predictive model for resistance rates, integrating climate and healthcare factors, explained 64.1% of the variance (adjusted R-squared = 0.641). For detection rates, the model accounted for 19.2% of the variance, highlighting the impact of environmental and healthcare influences. The study found higher resistance rates in warmer, monsoon climates and areas with more public health facilities, but lower rates in cooler, mountainous, or continental climates with more rainfall. This highlights the strong impact of climate on antibiotic resistance. Meanwhile, the predictive model effectively forecasts these resistance rates using China's diverse climate data. This is crucial for public health strategies and helps policymakers and healthcare practitioners tailor their approaches to antibiotic resistance based on local environmental conditions. These insights emphasize the importance of considering regional climates in managing antibiotic resistance. [Display omitted] •E. coli's resistance rates change with climate and Hu line.•Region-specific health strategies against antibiotic resistance is needed.•The model has a higher explanatory power.</description><identifier>ISSN: 0013-9351</identifier><identifier>EISSN: 1096-0953</identifier><identifier>DOI: 10.1016/j.envres.2023.117995</identifier><identifier>PMID: 38145731</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>Anti-Bacterial Agents - pharmacology ; antibiotic resistance ; China ; China - epidemiology ; China mainland ; Climate ; Drug Resistance, Bacterial ; Escherichia coli ; Escherichia coli Proteins ; geographical variation ; health services ; meteorological data ; Meteorology ; monitoring ; monsoon season ; mountains ; public health ; Quinolone-resistant ; Quinolones ; rain ; Region ; variance</subject><ispartof>Environmental research, 2024-03, Vol.245, p.117995-117995, Article 117995</ispartof><rights>2023 The Authors</rights><rights>Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-5e4066370d4bd2a51b45f73d07463a91c49060bdea30b79e1759b3ccd578dd553</citedby><cites>FETCH-LOGICAL-c441t-5e4066370d4bd2a51b45f73d07463a91c49060bdea30b79e1759b3ccd578dd553</cites><orcidid>0000-0002-3582-8305</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0013935123027998$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38145731$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Yi-Chang</creatorcontrib><creatorcontrib>Sun, Zhi-Hua</creatorcontrib><creatorcontrib>Xiao, Ming-Xuan</creatorcontrib><creatorcontrib>Li, Jia-Kai</creatorcontrib><creatorcontrib>Liu, Huai-yuan</creatorcontrib><creatorcontrib>Cai, Hua-Lin</creatorcontrib><creatorcontrib>Cao, Wei</creatorcontrib><creatorcontrib>Feng, Yu</creatorcontrib><creatorcontrib>Zhang, Bi-Kui</creatorcontrib><creatorcontrib>Yan, Miao</creatorcontrib><title>Analyzing the correlation between quinolone-resistant Escherichia coli resistance rates and climate factors: A comprehensive analysis across 31 Chinese provinces</title><title>Environmental research</title><addtitle>Environ Res</addtitle><description>The increasing problem of bacterial resistance, particularly with quinolone-resistant Escherichia coli (QnR eco) poses a serious global health issue. We collected data on QnR eco resistance rates and detection frequencies from 2014 to 2021 via the China Antimicrobial Resistance Surveillance System, complemented by meteorological and socioeconomic data from the China Statistical Yearbook and the China Meteorological Data Service Centre (CMDC). Comprehensive nonparametric testing and multivariate regression models were used in the analysis. Our analysis revealed significant regional differences in QnR eco resistance and detection rates across China. Along the Hu Huanyong Line, resistance rates varied markedly: 49.35 in the northwest, 54.40 on the line, and 52.30 in the southeast (P = 0.001). Detection rates also showed significant geographical variation, with notable differences between regions (P &lt; 0.001). Climate types influenced these rates, with significant variability observed across different climates (P &lt; 0.001). Our predictive model for resistance rates, integrating climate and healthcare factors, explained 64.1% of the variance (adjusted R-squared = 0.641). For detection rates, the model accounted for 19.2% of the variance, highlighting the impact of environmental and healthcare influences. The study found higher resistance rates in warmer, monsoon climates and areas with more public health facilities, but lower rates in cooler, mountainous, or continental climates with more rainfall. This highlights the strong impact of climate on antibiotic resistance. Meanwhile, the predictive model effectively forecasts these resistance rates using China's diverse climate data. This is crucial for public health strategies and helps policymakers and healthcare practitioners tailor their approaches to antibiotic resistance based on local environmental conditions. These insights emphasize the importance of considering regional climates in managing antibiotic resistance. [Display omitted] •E. coli's resistance rates change with climate and Hu line.•Region-specific health strategies against antibiotic resistance is needed.•The model has a higher explanatory power.</description><subject>Anti-Bacterial Agents - pharmacology</subject><subject>antibiotic resistance</subject><subject>China</subject><subject>China - epidemiology</subject><subject>China mainland</subject><subject>Climate</subject><subject>Drug Resistance, Bacterial</subject><subject>Escherichia coli</subject><subject>Escherichia coli Proteins</subject><subject>geographical variation</subject><subject>health services</subject><subject>meteorological data</subject><subject>Meteorology</subject><subject>monitoring</subject><subject>monsoon season</subject><subject>mountains</subject><subject>public health</subject><subject>Quinolone-resistant</subject><subject>Quinolones</subject><subject>rain</subject><subject>Region</subject><subject>variance</subject><issn>0013-9351</issn><issn>1096-0953</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9vEzEQxS0EoqHwDRDykcsGT2yvsxyQoqj8kSpxgbPltSeso403tZ1U5dvwTZmyLUc4WSP_3jzNe4y9BrEEAe27_RLTOWNZrsRKLgFM1-knbAGiaxvRafmULYQA2XRSwwV7UcqeRtBSPGcXcg1KGwkL9muT3Hj3M6YfvA7I_ZQzjq7GKfEe6y1i4jenmKZxStiQWyzVpcqvih8wRz9ER5ox8scvjzy7ioW7FLgf44EGvnO-Trm85xuCD8eMA6YSz0gQmZOQO5-nUrgEvh1iwoL8mKdzpHXlJXu2c2PBVw_vJfv-8erb9nNz_fXTl-3muvFKQW00KtG20oig-rByGnqld0YGYVQrXQdedaIVfUAnRW86BKO7XnoftFmHoLW8ZG_nveR8c8JS7SEWj-PoEk6nYiVl19I2tf4vuiIrMFQIEKpm9M-BGXf2mCmUfGdB2Pse7d7OPdr7Hu3cI8nePDic-gOGv6LH4gj4MANIkZwjZlt8RMorxIy-2jDFfzv8BoeGs7o</recordid><startdate>20240315</startdate><enddate>20240315</enddate><creator>Zhao, Yi-Chang</creator><creator>Sun, Zhi-Hua</creator><creator>Xiao, Ming-Xuan</creator><creator>Li, Jia-Kai</creator><creator>Liu, Huai-yuan</creator><creator>Cai, Hua-Lin</creator><creator>Cao, Wei</creator><creator>Feng, Yu</creator><creator>Zhang, Bi-Kui</creator><creator>Yan, Miao</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-3582-8305</orcidid></search><sort><creationdate>20240315</creationdate><title>Analyzing the correlation between quinolone-resistant Escherichia coli resistance rates and climate factors: A comprehensive analysis across 31 Chinese provinces</title><author>Zhao, Yi-Chang ; Sun, Zhi-Hua ; Xiao, Ming-Xuan ; Li, Jia-Kai ; Liu, Huai-yuan ; Cai, Hua-Lin ; Cao, Wei ; Feng, Yu ; Zhang, Bi-Kui ; Yan, Miao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-5e4066370d4bd2a51b45f73d07463a91c49060bdea30b79e1759b3ccd578dd553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anti-Bacterial Agents - pharmacology</topic><topic>antibiotic resistance</topic><topic>China</topic><topic>China - epidemiology</topic><topic>China mainland</topic><topic>Climate</topic><topic>Drug Resistance, Bacterial</topic><topic>Escherichia coli</topic><topic>Escherichia coli Proteins</topic><topic>geographical variation</topic><topic>health services</topic><topic>meteorological data</topic><topic>Meteorology</topic><topic>monitoring</topic><topic>monsoon season</topic><topic>mountains</topic><topic>public health</topic><topic>Quinolone-resistant</topic><topic>Quinolones</topic><topic>rain</topic><topic>Region</topic><topic>variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yi-Chang</creatorcontrib><creatorcontrib>Sun, Zhi-Hua</creatorcontrib><creatorcontrib>Xiao, Ming-Xuan</creatorcontrib><creatorcontrib>Li, Jia-Kai</creatorcontrib><creatorcontrib>Liu, Huai-yuan</creatorcontrib><creatorcontrib>Cai, Hua-Lin</creatorcontrib><creatorcontrib>Cao, Wei</creatorcontrib><creatorcontrib>Feng, Yu</creatorcontrib><creatorcontrib>Zhang, Bi-Kui</creatorcontrib><creatorcontrib>Yan, Miao</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Environmental research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yi-Chang</au><au>Sun, Zhi-Hua</au><au>Xiao, Ming-Xuan</au><au>Li, Jia-Kai</au><au>Liu, Huai-yuan</au><au>Cai, Hua-Lin</au><au>Cao, Wei</au><au>Feng, Yu</au><au>Zhang, Bi-Kui</au><au>Yan, Miao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analyzing the correlation between quinolone-resistant Escherichia coli resistance rates and climate factors: A comprehensive analysis across 31 Chinese provinces</atitle><jtitle>Environmental research</jtitle><addtitle>Environ Res</addtitle><date>2024-03-15</date><risdate>2024</risdate><volume>245</volume><spage>117995</spage><epage>117995</epage><pages>117995-117995</pages><artnum>117995</artnum><issn>0013-9351</issn><eissn>1096-0953</eissn><abstract>The increasing problem of bacterial resistance, particularly with quinolone-resistant Escherichia coli (QnR eco) poses a serious global health issue. We collected data on QnR eco resistance rates and detection frequencies from 2014 to 2021 via the China Antimicrobial Resistance Surveillance System, complemented by meteorological and socioeconomic data from the China Statistical Yearbook and the China Meteorological Data Service Centre (CMDC). Comprehensive nonparametric testing and multivariate regression models were used in the analysis. Our analysis revealed significant regional differences in QnR eco resistance and detection rates across China. Along the Hu Huanyong Line, resistance rates varied markedly: 49.35 in the northwest, 54.40 on the line, and 52.30 in the southeast (P = 0.001). Detection rates also showed significant geographical variation, with notable differences between regions (P &lt; 0.001). Climate types influenced these rates, with significant variability observed across different climates (P &lt; 0.001). Our predictive model for resistance rates, integrating climate and healthcare factors, explained 64.1% of the variance (adjusted R-squared = 0.641). For detection rates, the model accounted for 19.2% of the variance, highlighting the impact of environmental and healthcare influences. The study found higher resistance rates in warmer, monsoon climates and areas with more public health facilities, but lower rates in cooler, mountainous, or continental climates with more rainfall. This highlights the strong impact of climate on antibiotic resistance. Meanwhile, the predictive model effectively forecasts these resistance rates using China's diverse climate data. This is crucial for public health strategies and helps policymakers and healthcare practitioners tailor their approaches to antibiotic resistance based on local environmental conditions. These insights emphasize the importance of considering regional climates in managing antibiotic resistance. [Display omitted] •E. coli's resistance rates change with climate and Hu line.•Region-specific health strategies against antibiotic resistance is needed.•The model has a higher explanatory power.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>38145731</pmid><doi>10.1016/j.envres.2023.117995</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3582-8305</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-9351
ispartof Environmental research, 2024-03, Vol.245, p.117995-117995, Article 117995
issn 0013-9351
1096-0953
language eng
recordid cdi_proquest_miscellaneous_2906177991
source MEDLINE; Elsevier ScienceDirect Journals
subjects Anti-Bacterial Agents - pharmacology
antibiotic resistance
China
China - epidemiology
China mainland
Climate
Drug Resistance, Bacterial
Escherichia coli
Escherichia coli Proteins
geographical variation
health services
meteorological data
Meteorology
monitoring
monsoon season
mountains
public health
Quinolone-resistant
Quinolones
rain
Region
variance
title Analyzing the correlation between quinolone-resistant Escherichia coli resistance rates and climate factors: A comprehensive analysis across 31 Chinese provinces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T13%3A19%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analyzing%20the%20correlation%20between%20quinolone-resistant%20Escherichia%20coli%20resistance%20rates%20and%20climate%20factors:%20A%20comprehensive%20analysis%20across%2031%20Chinese%20provinces&rft.jtitle=Environmental%20research&rft.au=Zhao,%20Yi-Chang&rft.date=2024-03-15&rft.volume=245&rft.spage=117995&rft.epage=117995&rft.pages=117995-117995&rft.artnum=117995&rft.issn=0013-9351&rft.eissn=1096-0953&rft_id=info:doi/10.1016/j.envres.2023.117995&rft_dat=%3Cproquest_cross%3E2906177991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2906177991&rft_id=info:pmid/38145731&rft_els_id=S0013935123027998&rfr_iscdi=true