Table-driven implementation of the exponential function in IEEE floating-point arithmetic
Algorithms and implementation details for the exponential function in both single- and double-precision of IEEE 754 arithmetic are presented here. With a table of moderate size, the implementations need only working-precision arithmetic and are provably accurate to within 0.54 ulp as long as the fin...
Gespeichert in:
Veröffentlicht in: | ACM transactions on mathematical software 1989-06, Vol.15 (2), p.144-157 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 157 |
---|---|
container_issue | 2 |
container_start_page | 144 |
container_title | ACM transactions on mathematical software |
container_volume | 15 |
creator | Tang, Ping-Tak Peter |
description | Algorithms and implementation details for the exponential function in both single- and double-precision of IEEE 754 arithmetic are presented here. With a table of moderate size, the implementations need only working-precision arithmetic and are provably accurate to within 0.54 ulp as long as the final result does not underflow. When the final result suffers gradual underflow, the error is still no worse than 0.77 ulp. |
doi_str_mv | 10.1145/63522.214389 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29060444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29060444</sourcerecordid><originalsourceid>FETCH-LOGICAL-a349t-1936d7647f9ea098fcc6a7b50c249aa27c4899b6eaf8adbdcfffd56e450e3c703</originalsourceid><addsrcrecordid>eNo9kDFPwzAQRi0EEqWwsbB5QEyk2I4dxyOqAlSqxFIGpuji2NQocULsIvj3hKbqdNJ9755OH0LXlCwo5eIhSwVjC0Z5mqsTNKNCyEQyJU7RjBCVJ6kg5BxdhPBJCGFU0hl630DVmKQe3Lfx2LV9Y1rjI0TXedxZHLcGm5--8-PSQYPtzut95jxeFUWBbdONsP9I-s75iGFwcdua6PQlOrPQBHN1mHP09lRsli_J-vV5tXxcJ5ByFROq0qyWGZdWGRiftFpnICtBNOMKgEnNc6WqzIDNoa5qba2tRWa4ICbVkqRzdDd5-6H72pkQy9YFbZoGvOl2oWSKZIRzPoL3E6iHLoTB2LIfXAvDb0lJ-d9fue-vnPob8duDF4KGxg7gtQvHm0xIItS_9WbCQLfH8KD4A6eveMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29060444</pqid></control><display><type>article</type><title>Table-driven implementation of the exponential function in IEEE floating-point arithmetic</title><source>ACM Digital Library Complete</source><creator>Tang, Ping-Tak Peter</creator><creatorcontrib>Tang, Ping-Tak Peter</creatorcontrib><description>Algorithms and implementation details for the exponential function in both single- and double-precision of IEEE 754 arithmetic are presented here. With a table of moderate size, the implementations need only working-precision arithmetic and are provably accurate to within 0.54 ulp as long as the final result does not underflow. When the final result suffers gradual underflow, the error is still no worse than 0.77 ulp.</description><identifier>ISSN: 0098-3500</identifier><identifier>EISSN: 1557-7295</identifier><identifier>DOI: 10.1145/63522.214389</identifier><identifier>CODEN: ACMSCU</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><subject>Arbitrary-precision arithmetic ; Design and analysis of algorithms ; Differential equations ; Error-correcting codes ; Exact sciences and technology ; Interpolation ; Interval arithmetic ; Mathematical analysis ; Mathematical software ; Mathematics ; Mathematics of computing ; Nonlinear algebraic and transcendental equations ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical differentiation ; Ordinary differential equations ; Randomness, geometry and discrete structures ; Sciences and techniques of general use ; Theory of computation</subject><ispartof>ACM transactions on mathematical software, 1989-06, Vol.15 (2), p.144-157</ispartof><rights>ACM</rights><rights>1990 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a349t-1936d7647f9ea098fcc6a7b50c249aa27c4899b6eaf8adbdcfffd56e450e3c703</citedby><cites>FETCH-LOGICAL-a349t-1936d7647f9ea098fcc6a7b50c249aa27c4899b6eaf8adbdcfffd56e450e3c703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/63522.214389$$EPDF$$P50$$Gacm$$H</linktopdf><link.rule.ids>314,776,780,2276,27901,27902,40172,75971</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6570594$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Ping-Tak Peter</creatorcontrib><title>Table-driven implementation of the exponential function in IEEE floating-point arithmetic</title><title>ACM transactions on mathematical software</title><addtitle>ACM TOMS</addtitle><description>Algorithms and implementation details for the exponential function in both single- and double-precision of IEEE 754 arithmetic are presented here. With a table of moderate size, the implementations need only working-precision arithmetic and are provably accurate to within 0.54 ulp as long as the final result does not underflow. When the final result suffers gradual underflow, the error is still no worse than 0.77 ulp.</description><subject>Arbitrary-precision arithmetic</subject><subject>Design and analysis of algorithms</subject><subject>Differential equations</subject><subject>Error-correcting codes</subject><subject>Exact sciences and technology</subject><subject>Interpolation</subject><subject>Interval arithmetic</subject><subject>Mathematical analysis</subject><subject>Mathematical software</subject><subject>Mathematics</subject><subject>Mathematics of computing</subject><subject>Nonlinear algebraic and transcendental equations</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical differentiation</subject><subject>Ordinary differential equations</subject><subject>Randomness, geometry and discrete structures</subject><subject>Sciences and techniques of general use</subject><subject>Theory of computation</subject><issn>0098-3500</issn><issn>1557-7295</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNo9kDFPwzAQRi0EEqWwsbB5QEyk2I4dxyOqAlSqxFIGpuji2NQocULsIvj3hKbqdNJ9755OH0LXlCwo5eIhSwVjC0Z5mqsTNKNCyEQyJU7RjBCVJ6kg5BxdhPBJCGFU0hl630DVmKQe3Lfx2LV9Y1rjI0TXedxZHLcGm5--8-PSQYPtzut95jxeFUWBbdONsP9I-s75iGFwcdua6PQlOrPQBHN1mHP09lRsli_J-vV5tXxcJ5ByFROq0qyWGZdWGRiftFpnICtBNOMKgEnNc6WqzIDNoa5qba2tRWa4ICbVkqRzdDd5-6H72pkQy9YFbZoGvOl2oWSKZIRzPoL3E6iHLoTB2LIfXAvDb0lJ-d9fue-vnPob8duDF4KGxg7gtQvHm0xIItS_9WbCQLfH8KD4A6eveMQ</recordid><startdate>19890601</startdate><enddate>19890601</enddate><creator>Tang, Ping-Tak Peter</creator><general>ACM</general><general>Association for Computing Machinery</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19890601</creationdate><title>Table-driven implementation of the exponential function in IEEE floating-point arithmetic</title><author>Tang, Ping-Tak Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a349t-1936d7647f9ea098fcc6a7b50c249aa27c4899b6eaf8adbdcfffd56e450e3c703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Arbitrary-precision arithmetic</topic><topic>Design and analysis of algorithms</topic><topic>Differential equations</topic><topic>Error-correcting codes</topic><topic>Exact sciences and technology</topic><topic>Interpolation</topic><topic>Interval arithmetic</topic><topic>Mathematical analysis</topic><topic>Mathematical software</topic><topic>Mathematics</topic><topic>Mathematics of computing</topic><topic>Nonlinear algebraic and transcendental equations</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical differentiation</topic><topic>Ordinary differential equations</topic><topic>Randomness, geometry and discrete structures</topic><topic>Sciences and techniques of general use</topic><topic>Theory of computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Ping-Tak Peter</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ACM transactions on mathematical software</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Ping-Tak Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Table-driven implementation of the exponential function in IEEE floating-point arithmetic</atitle><jtitle>ACM transactions on mathematical software</jtitle><stitle>ACM TOMS</stitle><date>1989-06-01</date><risdate>1989</risdate><volume>15</volume><issue>2</issue><spage>144</spage><epage>157</epage><pages>144-157</pages><issn>0098-3500</issn><eissn>1557-7295</eissn><coden>ACMSCU</coden><abstract>Algorithms and implementation details for the exponential function in both single- and double-precision of IEEE 754 arithmetic are presented here. With a table of moderate size, the implementations need only working-precision arithmetic and are provably accurate to within 0.54 ulp as long as the final result does not underflow. When the final result suffers gradual underflow, the error is still no worse than 0.77 ulp.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><doi>10.1145/63522.214389</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-3500 |
ispartof | ACM transactions on mathematical software, 1989-06, Vol.15 (2), p.144-157 |
issn | 0098-3500 1557-7295 |
language | eng |
recordid | cdi_proquest_miscellaneous_29060444 |
source | ACM Digital Library Complete |
subjects | Arbitrary-precision arithmetic Design and analysis of algorithms Differential equations Error-correcting codes Exact sciences and technology Interpolation Interval arithmetic Mathematical analysis Mathematical software Mathematics Mathematics of computing Nonlinear algebraic and transcendental equations Numerical analysis Numerical analysis. Scientific computation Numerical differentiation Ordinary differential equations Randomness, geometry and discrete structures Sciences and techniques of general use Theory of computation |
title | Table-driven implementation of the exponential function in IEEE floating-point arithmetic |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T14%3A58%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Table-driven%20implementation%20of%20the%20exponential%20function%20in%20IEEE%20floating-point%20arithmetic&rft.jtitle=ACM%20transactions%20on%20mathematical%20software&rft.au=Tang,%20Ping-Tak%20Peter&rft.date=1989-06-01&rft.volume=15&rft.issue=2&rft.spage=144&rft.epage=157&rft.pages=144-157&rft.issn=0098-3500&rft.eissn=1557-7295&rft.coden=ACMSCU&rft_id=info:doi/10.1145/63522.214389&rft_dat=%3Cproquest_cross%3E29060444%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29060444&rft_id=info:pmid/&rfr_iscdi=true |