Table-driven implementation of the exponential function in IEEE floating-point arithmetic

Algorithms and implementation details for the exponential function in both single- and double-precision of IEEE 754 arithmetic are presented here. With a table of moderate size, the implementations need only working-precision arithmetic and are provably accurate to within 0.54 ulp as long as the fin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on mathematical software 1989-06, Vol.15 (2), p.144-157
1. Verfasser: Tang, Ping-Tak Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 157
container_issue 2
container_start_page 144
container_title ACM transactions on mathematical software
container_volume 15
creator Tang, Ping-Tak Peter
description Algorithms and implementation details for the exponential function in both single- and double-precision of IEEE 754 arithmetic are presented here. With a table of moderate size, the implementations need only working-precision arithmetic and are provably accurate to within 0.54 ulp as long as the final result does not underflow. When the final result suffers gradual underflow, the error is still no worse than 0.77 ulp.
doi_str_mv 10.1145/63522.214389
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29060444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29060444</sourcerecordid><originalsourceid>FETCH-LOGICAL-a349t-1936d7647f9ea098fcc6a7b50c249aa27c4899b6eaf8adbdcfffd56e450e3c703</originalsourceid><addsrcrecordid>eNo9kDFPwzAQRi0EEqWwsbB5QEyk2I4dxyOqAlSqxFIGpuji2NQocULsIvj3hKbqdNJ9755OH0LXlCwo5eIhSwVjC0Z5mqsTNKNCyEQyJU7RjBCVJ6kg5BxdhPBJCGFU0hl630DVmKQe3Lfx2LV9Y1rjI0TXedxZHLcGm5--8-PSQYPtzut95jxeFUWBbdONsP9I-s75iGFwcdua6PQlOrPQBHN1mHP09lRsli_J-vV5tXxcJ5ByFROq0qyWGZdWGRiftFpnICtBNOMKgEnNc6WqzIDNoa5qba2tRWa4ICbVkqRzdDd5-6H72pkQy9YFbZoGvOl2oWSKZIRzPoL3E6iHLoTB2LIfXAvDb0lJ-d9fue-vnPob8duDF4KGxg7gtQvHm0xIItS_9WbCQLfH8KD4A6eveMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29060444</pqid></control><display><type>article</type><title>Table-driven implementation of the exponential function in IEEE floating-point arithmetic</title><source>ACM Digital Library Complete</source><creator>Tang, Ping-Tak Peter</creator><creatorcontrib>Tang, Ping-Tak Peter</creatorcontrib><description>Algorithms and implementation details for the exponential function in both single- and double-precision of IEEE 754 arithmetic are presented here. With a table of moderate size, the implementations need only working-precision arithmetic and are provably accurate to within 0.54 ulp as long as the final result does not underflow. When the final result suffers gradual underflow, the error is still no worse than 0.77 ulp.</description><identifier>ISSN: 0098-3500</identifier><identifier>EISSN: 1557-7295</identifier><identifier>DOI: 10.1145/63522.214389</identifier><identifier>CODEN: ACMSCU</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><subject>Arbitrary-precision arithmetic ; Design and analysis of algorithms ; Differential equations ; Error-correcting codes ; Exact sciences and technology ; Interpolation ; Interval arithmetic ; Mathematical analysis ; Mathematical software ; Mathematics ; Mathematics of computing ; Nonlinear algebraic and transcendental equations ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical differentiation ; Ordinary differential equations ; Randomness, geometry and discrete structures ; Sciences and techniques of general use ; Theory of computation</subject><ispartof>ACM transactions on mathematical software, 1989-06, Vol.15 (2), p.144-157</ispartof><rights>ACM</rights><rights>1990 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a349t-1936d7647f9ea098fcc6a7b50c249aa27c4899b6eaf8adbdcfffd56e450e3c703</citedby><cites>FETCH-LOGICAL-a349t-1936d7647f9ea098fcc6a7b50c249aa27c4899b6eaf8adbdcfffd56e450e3c703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/63522.214389$$EPDF$$P50$$Gacm$$H</linktopdf><link.rule.ids>314,776,780,2276,27901,27902,40172,75971</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=6570594$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Ping-Tak Peter</creatorcontrib><title>Table-driven implementation of the exponential function in IEEE floating-point arithmetic</title><title>ACM transactions on mathematical software</title><addtitle>ACM TOMS</addtitle><description>Algorithms and implementation details for the exponential function in both single- and double-precision of IEEE 754 arithmetic are presented here. With a table of moderate size, the implementations need only working-precision arithmetic and are provably accurate to within 0.54 ulp as long as the final result does not underflow. When the final result suffers gradual underflow, the error is still no worse than 0.77 ulp.</description><subject>Arbitrary-precision arithmetic</subject><subject>Design and analysis of algorithms</subject><subject>Differential equations</subject><subject>Error-correcting codes</subject><subject>Exact sciences and technology</subject><subject>Interpolation</subject><subject>Interval arithmetic</subject><subject>Mathematical analysis</subject><subject>Mathematical software</subject><subject>Mathematics</subject><subject>Mathematics of computing</subject><subject>Nonlinear algebraic and transcendental equations</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical differentiation</subject><subject>Ordinary differential equations</subject><subject>Randomness, geometry and discrete structures</subject><subject>Sciences and techniques of general use</subject><subject>Theory of computation</subject><issn>0098-3500</issn><issn>1557-7295</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNo9kDFPwzAQRi0EEqWwsbB5QEyk2I4dxyOqAlSqxFIGpuji2NQocULsIvj3hKbqdNJ9755OH0LXlCwo5eIhSwVjC0Z5mqsTNKNCyEQyJU7RjBCVJ6kg5BxdhPBJCGFU0hl630DVmKQe3Lfx2LV9Y1rjI0TXedxZHLcGm5--8-PSQYPtzut95jxeFUWBbdONsP9I-s75iGFwcdua6PQlOrPQBHN1mHP09lRsli_J-vV5tXxcJ5ByFROq0qyWGZdWGRiftFpnICtBNOMKgEnNc6WqzIDNoa5qba2tRWa4ICbVkqRzdDd5-6H72pkQy9YFbZoGvOl2oWSKZIRzPoL3E6iHLoTB2LIfXAvDb0lJ-d9fue-vnPob8duDF4KGxg7gtQvHm0xIItS_9WbCQLfH8KD4A6eveMQ</recordid><startdate>19890601</startdate><enddate>19890601</enddate><creator>Tang, Ping-Tak Peter</creator><general>ACM</general><general>Association for Computing Machinery</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19890601</creationdate><title>Table-driven implementation of the exponential function in IEEE floating-point arithmetic</title><author>Tang, Ping-Tak Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a349t-1936d7647f9ea098fcc6a7b50c249aa27c4899b6eaf8adbdcfffd56e450e3c703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Arbitrary-precision arithmetic</topic><topic>Design and analysis of algorithms</topic><topic>Differential equations</topic><topic>Error-correcting codes</topic><topic>Exact sciences and technology</topic><topic>Interpolation</topic><topic>Interval arithmetic</topic><topic>Mathematical analysis</topic><topic>Mathematical software</topic><topic>Mathematics</topic><topic>Mathematics of computing</topic><topic>Nonlinear algebraic and transcendental equations</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical differentiation</topic><topic>Ordinary differential equations</topic><topic>Randomness, geometry and discrete structures</topic><topic>Sciences and techniques of general use</topic><topic>Theory of computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Ping-Tak Peter</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ACM transactions on mathematical software</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Ping-Tak Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Table-driven implementation of the exponential function in IEEE floating-point arithmetic</atitle><jtitle>ACM transactions on mathematical software</jtitle><stitle>ACM TOMS</stitle><date>1989-06-01</date><risdate>1989</risdate><volume>15</volume><issue>2</issue><spage>144</spage><epage>157</epage><pages>144-157</pages><issn>0098-3500</issn><eissn>1557-7295</eissn><coden>ACMSCU</coden><abstract>Algorithms and implementation details for the exponential function in both single- and double-precision of IEEE 754 arithmetic are presented here. With a table of moderate size, the implementations need only working-precision arithmetic and are provably accurate to within 0.54 ulp as long as the final result does not underflow. When the final result suffers gradual underflow, the error is still no worse than 0.77 ulp.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><doi>10.1145/63522.214389</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0098-3500
ispartof ACM transactions on mathematical software, 1989-06, Vol.15 (2), p.144-157
issn 0098-3500
1557-7295
language eng
recordid cdi_proquest_miscellaneous_29060444
source ACM Digital Library Complete
subjects Arbitrary-precision arithmetic
Design and analysis of algorithms
Differential equations
Error-correcting codes
Exact sciences and technology
Interpolation
Interval arithmetic
Mathematical analysis
Mathematical software
Mathematics
Mathematics of computing
Nonlinear algebraic and transcendental equations
Numerical analysis
Numerical analysis. Scientific computation
Numerical differentiation
Ordinary differential equations
Randomness, geometry and discrete structures
Sciences and techniques of general use
Theory of computation
title Table-driven implementation of the exponential function in IEEE floating-point arithmetic
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T14%3A58%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Table-driven%20implementation%20of%20the%20exponential%20function%20in%20IEEE%20floating-point%20arithmetic&rft.jtitle=ACM%20transactions%20on%20mathematical%20software&rft.au=Tang,%20Ping-Tak%20Peter&rft.date=1989-06-01&rft.volume=15&rft.issue=2&rft.spage=144&rft.epage=157&rft.pages=144-157&rft.issn=0098-3500&rft.eissn=1557-7295&rft.coden=ACMSCU&rft_id=info:doi/10.1145/63522.214389&rft_dat=%3Cproquest_cross%3E29060444%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29060444&rft_id=info:pmid/&rfr_iscdi=true