The dynamics of eccentric accretion discs in superhump systems

We have applied an eccentric accretion disc theory in simplified form to the case of an accretion disc in a binary system, where the disc contains the 3:1 Lindblad resonance. This is relevant to the case of superhumps in SU Ursae Majoris cataclysmic variables and other systems, where it is thought t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2006-05, Vol.368 (3), p.1123-1131
Hauptverfasser: Goodchild, Simon, Ogilvie, Gordon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1131
container_issue 3
container_start_page 1123
container_title Monthly notices of the Royal Astronomical Society
container_volume 368
creator Goodchild, Simon
Ogilvie, Gordon
description We have applied an eccentric accretion disc theory in simplified form to the case of an accretion disc in a binary system, where the disc contains the 3:1 Lindblad resonance. This is relevant to the case of superhumps in SU Ursae Majoris cataclysmic variables and other systems, where it is thought that this resonance leads to growth of eccentricity and a modulation in the light curve due to the interaction of a precessing eccentric disc with tidal stresses. A single differential equation is formulated which describes the propagation, resonant excitation and viscous damping of eccentricity. The theory is first worked out in the simple case of a narrow ring and leads to the conclusion that the eccentricity distribution is locally suppressed by the presence of the resonance, creating a dip in the eccentricity at the resonant radius. Application of this theory to the superhump case confirms this conclusion and produces a more accurate expression for the precession rate of the disc than has been previously accomplished with simple dynamical estimates.
doi_str_mv 10.1111/j.1365-2966.2006.10197.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29058097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1111/j.1365-2966.2006.10197.x</oup_id><sourcerecordid>29058097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5657-32fae1ffa24baf9b7c6cb4e01d08b24308ef07cc0bf5b0d422641a2d3e5f3a7f3</originalsourceid><addsrcrecordid>eNqNkV9rFDEUxYMouFa_wyDo24w3ySSZeSnIoq1YFaRi6cslk0lo1vlnsoO7395Mp1QQRfOSwP2dw7knhGQUCprOq11BuRQ5q6UsGIAsKNBaFYcHZHM_eEg2AFzklaL0MXkS4w4ASs7khpxe3tisPQ669yZmo8usMXbYB28ybUywez8OWetjGvohi_Nkw83cT1k8xr3t41PyyOku2md39wn58vbN5fY8v_h09m77-iI3QgqVc-a0pc5pVjba1Y0y0jSlBdpC1bCSQ2UdKGOgcaKBtmRMllSzllvhuFaOn5CXq-8Uxu-zjXvsUybbdXqw4xyR1SAqqNW_wUSJUtIEPv8N3I1zGNISyEBxVTIJCapWyIQxxmAdTsH3OhyRAi714w6XlnFpGZf68bZ-PCTpizt_HY3uXNCD8fGXXikhJVsCn67cD9_Z43_744ePn2-fyYCvBuM8_UWe_ylevqp8-sfDvU6HbyjT9gLPr67x-v1XdnZVbZHxn3zrtlI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>207374260</pqid></control><display><type>article</type><title>The dynamics of eccentric accretion discs in superhump systems</title><source>Oxford Journals Open Access Collection</source><source>Wiley Online Library - AutoHoldings Journals</source><creator>Goodchild, Simon ; Ogilvie, Gordon</creator><creatorcontrib>Goodchild, Simon ; Ogilvie, Gordon</creatorcontrib><description>We have applied an eccentric accretion disc theory in simplified form to the case of an accretion disc in a binary system, where the disc contains the 3:1 Lindblad resonance. This is relevant to the case of superhumps in SU Ursae Majoris cataclysmic variables and other systems, where it is thought that this resonance leads to growth of eccentricity and a modulation in the light curve due to the interaction of a precessing eccentric disc with tidal stresses. A single differential equation is formulated which describes the propagation, resonant excitation and viscous damping of eccentricity. The theory is first worked out in the simple case of a narrow ring and leads to the conclusion that the eccentricity distribution is locally suppressed by the presence of the resonance, creating a dip in the eccentricity at the resonant radius. Application of this theory to the superhump case confirms this conclusion and produces a more accurate expression for the precession rate of the disc than has been previously accomplished with simple dynamical estimates.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1111/j.1365-2966.2006.10197.x</identifier><identifier>CODEN: MNRAA4</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>accretion ; accretion discs ; Accretion disks ; accretion, accretion discs ; Astronomy ; Astrophysics ; Double stars ; Earth, ocean, space ; Exact sciences and technology ; stars: dwarf novae</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2006-05, Vol.368 (3), p.1123-1131</ispartof><rights>2006 The Authors. Journal compilation © 2006 RAS 2006</rights><rights>2006 INIST-CNRS</rights><rights>2006 The Authors. Journal compilation © 2006 RAS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5657-32fae1ffa24baf9b7c6cb4e01d08b24308ef07cc0bf5b0d422641a2d3e5f3a7f3</citedby><cites>FETCH-LOGICAL-c5657-32fae1ffa24baf9b7c6cb4e01d08b24308ef07cc0bf5b0d422641a2d3e5f3a7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2966.2006.10197.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2966.2006.10197.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17756627$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Goodchild, Simon</creatorcontrib><creatorcontrib>Ogilvie, Gordon</creatorcontrib><title>The dynamics of eccentric accretion discs in superhump systems</title><title>Monthly notices of the Royal Astronomical Society</title><addtitle>Monthly Notices of the Royal Astronomical Society</addtitle><addtitle>Monthly Notices of the Royal Astronomical Society</addtitle><description>We have applied an eccentric accretion disc theory in simplified form to the case of an accretion disc in a binary system, where the disc contains the 3:1 Lindblad resonance. This is relevant to the case of superhumps in SU Ursae Majoris cataclysmic variables and other systems, where it is thought that this resonance leads to growth of eccentricity and a modulation in the light curve due to the interaction of a precessing eccentric disc with tidal stresses. A single differential equation is formulated which describes the propagation, resonant excitation and viscous damping of eccentricity. The theory is first worked out in the simple case of a narrow ring and leads to the conclusion that the eccentricity distribution is locally suppressed by the presence of the resonance, creating a dip in the eccentricity at the resonant radius. Application of this theory to the superhump case confirms this conclusion and produces a more accurate expression for the precession rate of the disc than has been previously accomplished with simple dynamical estimates.</description><subject>accretion</subject><subject>accretion discs</subject><subject>Accretion disks</subject><subject>accretion, accretion discs</subject><subject>Astronomy</subject><subject>Astrophysics</subject><subject>Double stars</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>stars: dwarf novae</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNkV9rFDEUxYMouFa_wyDo24w3ySSZeSnIoq1YFaRi6cslk0lo1vlnsoO7395Mp1QQRfOSwP2dw7knhGQUCprOq11BuRQ5q6UsGIAsKNBaFYcHZHM_eEg2AFzklaL0MXkS4w4ASs7khpxe3tisPQ669yZmo8usMXbYB28ybUywez8OWetjGvohi_Nkw83cT1k8xr3t41PyyOku2md39wn58vbN5fY8v_h09m77-iI3QgqVc-a0pc5pVjba1Y0y0jSlBdpC1bCSQ2UdKGOgcaKBtmRMllSzllvhuFaOn5CXq-8Uxu-zjXvsUybbdXqw4xyR1SAqqNW_wUSJUtIEPv8N3I1zGNISyEBxVTIJCapWyIQxxmAdTsH3OhyRAi714w6XlnFpGZf68bZ-PCTpizt_HY3uXNCD8fGXXikhJVsCn67cD9_Z43_744ePn2-fyYCvBuM8_UWe_ylevqp8-sfDvU6HbyjT9gLPr67x-v1XdnZVbZHxn3zrtlI</recordid><startdate>20060521</startdate><enddate>20060521</enddate><creator>Goodchild, Simon</creator><creator>Ogilvie, Gordon</creator><general>Blackwell Publishing Ltd</general><general>Blackwell Science</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7U5</scope></search><sort><creationdate>20060521</creationdate><title>The dynamics of eccentric accretion discs in superhump systems</title><author>Goodchild, Simon ; Ogilvie, Gordon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5657-32fae1ffa24baf9b7c6cb4e01d08b24308ef07cc0bf5b0d422641a2d3e5f3a7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>accretion</topic><topic>accretion discs</topic><topic>Accretion disks</topic><topic>accretion, accretion discs</topic><topic>Astronomy</topic><topic>Astrophysics</topic><topic>Double stars</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>stars: dwarf novae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goodchild, Simon</creatorcontrib><creatorcontrib>Ogilvie, Gordon</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Solid State and Superconductivity Abstracts</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goodchild, Simon</au><au>Ogilvie, Gordon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The dynamics of eccentric accretion discs in superhump systems</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><stitle>Monthly Notices of the Royal Astronomical Society</stitle><addtitle>Monthly Notices of the Royal Astronomical Society</addtitle><date>2006-05-21</date><risdate>2006</risdate><volume>368</volume><issue>3</issue><spage>1123</spage><epage>1131</epage><pages>1123-1131</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><coden>MNRAA4</coden><abstract>We have applied an eccentric accretion disc theory in simplified form to the case of an accretion disc in a binary system, where the disc contains the 3:1 Lindblad resonance. This is relevant to the case of superhumps in SU Ursae Majoris cataclysmic variables and other systems, where it is thought that this resonance leads to growth of eccentricity and a modulation in the light curve due to the interaction of a precessing eccentric disc with tidal stresses. A single differential equation is formulated which describes the propagation, resonant excitation and viscous damping of eccentricity. The theory is first worked out in the simple case of a narrow ring and leads to the conclusion that the eccentricity distribution is locally suppressed by the presence of the resonance, creating a dip in the eccentricity at the resonant radius. Application of this theory to the superhump case confirms this conclusion and produces a more accurate expression for the precession rate of the disc than has been previously accomplished with simple dynamical estimates.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1365-2966.2006.10197.x</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2006-05, Vol.368 (3), p.1123-1131
issn 0035-8711
1365-2966
language eng
recordid cdi_proquest_miscellaneous_29058097
source Oxford Journals Open Access Collection; Wiley Online Library - AutoHoldings Journals
subjects accretion
accretion discs
Accretion disks
accretion, accretion discs
Astronomy
Astrophysics
Double stars
Earth, ocean, space
Exact sciences and technology
stars: dwarf novae
title The dynamics of eccentric accretion discs in superhump systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A24%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20dynamics%20of%20eccentric%20accretion%20discs%20in%20superhump%20systems&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Goodchild,%20Simon&rft.date=2006-05-21&rft.volume=368&rft.issue=3&rft.spage=1123&rft.epage=1131&rft.pages=1123-1131&rft.issn=0035-8711&rft.eissn=1365-2966&rft.coden=MNRAA4&rft_id=info:doi/10.1111/j.1365-2966.2006.10197.x&rft_dat=%3Cproquest_cross%3E29058097%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=207374260&rft_id=info:pmid/&rft_oup_id=10.1111/j.1365-2966.2006.10197.x&rfr_iscdi=true