Realization of High‐Performance Self‐Powered Polarized Photodetection with Large Temperature Window in a 2D Polar Perovskite

Polarization photodetection taking advantage of the anisotropy of 2D materials shines brilliantly in optoelectronic fields owing to differentiating optical information. However, the previously reported polarization detections are mostly dependent on external power sources, which is not conducive to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-06, Vol.20 (23), p.e2310166-n/a
Hauptverfasser: Wang, Lei, Wu, Chenhua, Xu, Zhijin, Wu, Huajie, Dong, Xin, Chen, Tianqi, Liang, Jing, Chen, Shuang, Luo, Junhua, Li, Lina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 23
container_start_page e2310166
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Wang, Lei
Wu, Chenhua
Xu, Zhijin
Wu, Huajie
Dong, Xin
Chen, Tianqi
Liang, Jing
Chen, Shuang
Luo, Junhua
Li, Lina
description Polarization photodetection taking advantage of the anisotropy of 2D materials shines brilliantly in optoelectronic fields owing to differentiating optical information. However, the previously reported polarization detections are mostly dependent on external power sources, which is not conducive to device integration and energy conservation. Herein, a 2D polar perovskite (CBA)2CsPb2Br7 (CCPB, CBA = 4‐chlorobenzyllamine) has been successfully synthesized, which shows anticipated bulk photovoltaic effect (BPVE) with an open‐circuited photovoltage up to ≈0.2 V. Devices based on CCPB monomorph fulfill a fascinating self‐powered polarized photodetection with a large polarization ratio of 2.7 at room temperature. Moreover, CCPB features a high phase‐transition temperature (≈475 K) which prompts such self‐powered polarized photodetection in a large temperature window of device operation, since BPVE generated by spontaneous polarization can only exist in the polar structure prior to the phase transition. Further computational investigation reveals the introduction of CBA+ with a large dipole moment contributes to quite large polarization (17.5 µC cm−2) and further super high phase transition temperature of CCPB. This study will promote the application of 2D perovskite materials for self‐powered polarized photodetection in high‐temperature conditions. A 2D polar perovskite showing high‐performance self‐powered polarized photodetection is acquired. Moreover, its high phase‐transition temperature (≈475 K) endows such self‐powered polarized photodetection in a large temperature window of device operation. The work will shed bright light on the design of novel polar perovskites for self‐powered polarized photodetection in high operating temperature to reduce the external environmental restriction.
doi_str_mv 10.1002/smll.202310166
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2905781671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064726285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3736-66b102c72ff3a221af3e9d1e310f1c56069fa6168c80171e1d55f8627854dacc3</originalsourceid><addsrcrecordid>eNqFkc1O3DAURi0E4q_dskSW2HQzg689cZJlBS1UCgIVqi4t41wzBice7KSjYcUj9Bn7JM0wMEjddOUr63xH9-oj5ADYGBjjx6nxfswZF8BAyg2yCxLESBa83FzPwHbIXkr3jAngk3yb7IgCJpngcpc8f0ft3ZPuXGhpsPTc3U3_PP--wmhDbHRrkF6jt8uvMMeINb0KXkf3tJymoQs1dmhe0nPXTWml4x3SG2xmGHXXR6Q_XVuHOXUt1ZSfruJ08Idf6cF1-IFsWe0Tfnx998mPr19uTs5H1eXZt5PP1ciIXMiRlLfAuMm5tUJzDtoKLGvA4W4LJpNMllZLkIUpGOSAUGeZLSTPi2xSa2PEPvm08s5ieOwxdapxyaD3usXQJ8VLluUFyBwG9Ogf9D70sR22U4LJSc4lL7KBGq8oE0NKEa2aRdfouFDA1LIbtexGrbsZAoev2v62wXqNv5UxAOUKmDuPi__o1PVFVb3L_wLfFp18</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064726285</pqid></control><display><type>article</type><title>Realization of High‐Performance Self‐Powered Polarized Photodetection with Large Temperature Window in a 2D Polar Perovskite</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Lei ; Wu, Chenhua ; Xu, Zhijin ; Wu, Huajie ; Dong, Xin ; Chen, Tianqi ; Liang, Jing ; Chen, Shuang ; Luo, Junhua ; Li, Lina</creator><creatorcontrib>Wang, Lei ; Wu, Chenhua ; Xu, Zhijin ; Wu, Huajie ; Dong, Xin ; Chen, Tianqi ; Liang, Jing ; Chen, Shuang ; Luo, Junhua ; Li, Lina</creatorcontrib><description>Polarization photodetection taking advantage of the anisotropy of 2D materials shines brilliantly in optoelectronic fields owing to differentiating optical information. However, the previously reported polarization detections are mostly dependent on external power sources, which is not conducive to device integration and energy conservation. Herein, a 2D polar perovskite (CBA)2CsPb2Br7 (CCPB, CBA = 4‐chlorobenzyllamine) has been successfully synthesized, which shows anticipated bulk photovoltaic effect (BPVE) with an open‐circuited photovoltage up to ≈0.2 V. Devices based on CCPB monomorph fulfill a fascinating self‐powered polarized photodetection with a large polarization ratio of 2.7 at room temperature. Moreover, CCPB features a high phase‐transition temperature (≈475 K) which prompts such self‐powered polarized photodetection in a large temperature window of device operation, since BPVE generated by spontaneous polarization can only exist in the polar structure prior to the phase transition. Further computational investigation reveals the introduction of CBA+ with a large dipole moment contributes to quite large polarization (17.5 µC cm−2) and further super high phase transition temperature of CCPB. This study will promote the application of 2D perovskite materials for self‐powered polarized photodetection in high‐temperature conditions. A 2D polar perovskite showing high‐performance self‐powered polarized photodetection is acquired. Moreover, its high phase‐transition temperature (≈475 K) endows such self‐powered polarized photodetection in a large temperature window of device operation. The work will shed bright light on the design of novel polar perovskites for self‐powered polarized photodetection in high operating temperature to reduce the external environmental restriction.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202310166</identifier><identifier>PMID: 38145326</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Anisotropy ; bulk photovoltaic effect ; Dipole moments ; high phase‐transition temperature ; Optoelectronics ; Perovskites ; Phase transitions ; Photovoltaic effect ; Polarization ; polarized photodetection ; Power sources ; Room temperature ; self‐powered photodetection ; Transition temperature ; Two dimensional materials</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-06, Vol.20 (23), p.e2310166-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3736-66b102c72ff3a221af3e9d1e310f1c56069fa6168c80171e1d55f8627854dacc3</citedby><cites>FETCH-LOGICAL-c3736-66b102c72ff3a221af3e9d1e310f1c56069fa6168c80171e1d55f8627854dacc3</cites><orcidid>0000-0002-7673-7979 ; 0000-0002-9736-7479 ; 0000-0003-1334-2213</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202310166$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202310166$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38145326$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Wu, Chenhua</creatorcontrib><creatorcontrib>Xu, Zhijin</creatorcontrib><creatorcontrib>Wu, Huajie</creatorcontrib><creatorcontrib>Dong, Xin</creatorcontrib><creatorcontrib>Chen, Tianqi</creatorcontrib><creatorcontrib>Liang, Jing</creatorcontrib><creatorcontrib>Chen, Shuang</creatorcontrib><creatorcontrib>Luo, Junhua</creatorcontrib><creatorcontrib>Li, Lina</creatorcontrib><title>Realization of High‐Performance Self‐Powered Polarized Photodetection with Large Temperature Window in a 2D Polar Perovskite</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Polarization photodetection taking advantage of the anisotropy of 2D materials shines brilliantly in optoelectronic fields owing to differentiating optical information. However, the previously reported polarization detections are mostly dependent on external power sources, which is not conducive to device integration and energy conservation. Herein, a 2D polar perovskite (CBA)2CsPb2Br7 (CCPB, CBA = 4‐chlorobenzyllamine) has been successfully synthesized, which shows anticipated bulk photovoltaic effect (BPVE) with an open‐circuited photovoltage up to ≈0.2 V. Devices based on CCPB monomorph fulfill a fascinating self‐powered polarized photodetection with a large polarization ratio of 2.7 at room temperature. Moreover, CCPB features a high phase‐transition temperature (≈475 K) which prompts such self‐powered polarized photodetection in a large temperature window of device operation, since BPVE generated by spontaneous polarization can only exist in the polar structure prior to the phase transition. Further computational investigation reveals the introduction of CBA+ with a large dipole moment contributes to quite large polarization (17.5 µC cm−2) and further super high phase transition temperature of CCPB. This study will promote the application of 2D perovskite materials for self‐powered polarized photodetection in high‐temperature conditions. A 2D polar perovskite showing high‐performance self‐powered polarized photodetection is acquired. Moreover, its high phase‐transition temperature (≈475 K) endows such self‐powered polarized photodetection in a large temperature window of device operation. The work will shed bright light on the design of novel polar perovskites for self‐powered polarized photodetection in high operating temperature to reduce the external environmental restriction.</description><subject>Anisotropy</subject><subject>bulk photovoltaic effect</subject><subject>Dipole moments</subject><subject>high phase‐transition temperature</subject><subject>Optoelectronics</subject><subject>Perovskites</subject><subject>Phase transitions</subject><subject>Photovoltaic effect</subject><subject>Polarization</subject><subject>polarized photodetection</subject><subject>Power sources</subject><subject>Room temperature</subject><subject>self‐powered photodetection</subject><subject>Transition temperature</subject><subject>Two dimensional materials</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc1O3DAURi0E4q_dskSW2HQzg689cZJlBS1UCgIVqi4t41wzBice7KSjYcUj9Bn7JM0wMEjddOUr63xH9-oj5ADYGBjjx6nxfswZF8BAyg2yCxLESBa83FzPwHbIXkr3jAngk3yb7IgCJpngcpc8f0ft3ZPuXGhpsPTc3U3_PP--wmhDbHRrkF6jt8uvMMeINb0KXkf3tJymoQs1dmhe0nPXTWml4x3SG2xmGHXXR6Q_XVuHOXUt1ZSfruJ08Idf6cF1-IFsWe0Tfnx998mPr19uTs5H1eXZt5PP1ciIXMiRlLfAuMm5tUJzDtoKLGvA4W4LJpNMllZLkIUpGOSAUGeZLSTPi2xSa2PEPvm08s5ieOwxdapxyaD3usXQJ8VLluUFyBwG9Ogf9D70sR22U4LJSc4lL7KBGq8oE0NKEa2aRdfouFDA1LIbtexGrbsZAoev2v62wXqNv5UxAOUKmDuPi__o1PVFVb3L_wLfFp18</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Wang, Lei</creator><creator>Wu, Chenhua</creator><creator>Xu, Zhijin</creator><creator>Wu, Huajie</creator><creator>Dong, Xin</creator><creator>Chen, Tianqi</creator><creator>Liang, Jing</creator><creator>Chen, Shuang</creator><creator>Luo, Junhua</creator><creator>Li, Lina</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7673-7979</orcidid><orcidid>https://orcid.org/0000-0002-9736-7479</orcidid><orcidid>https://orcid.org/0000-0003-1334-2213</orcidid></search><sort><creationdate>20240601</creationdate><title>Realization of High‐Performance Self‐Powered Polarized Photodetection with Large Temperature Window in a 2D Polar Perovskite</title><author>Wang, Lei ; Wu, Chenhua ; Xu, Zhijin ; Wu, Huajie ; Dong, Xin ; Chen, Tianqi ; Liang, Jing ; Chen, Shuang ; Luo, Junhua ; Li, Lina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3736-66b102c72ff3a221af3e9d1e310f1c56069fa6168c80171e1d55f8627854dacc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anisotropy</topic><topic>bulk photovoltaic effect</topic><topic>Dipole moments</topic><topic>high phase‐transition temperature</topic><topic>Optoelectronics</topic><topic>Perovskites</topic><topic>Phase transitions</topic><topic>Photovoltaic effect</topic><topic>Polarization</topic><topic>polarized photodetection</topic><topic>Power sources</topic><topic>Room temperature</topic><topic>self‐powered photodetection</topic><topic>Transition temperature</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Wu, Chenhua</creatorcontrib><creatorcontrib>Xu, Zhijin</creatorcontrib><creatorcontrib>Wu, Huajie</creatorcontrib><creatorcontrib>Dong, Xin</creatorcontrib><creatorcontrib>Chen, Tianqi</creatorcontrib><creatorcontrib>Liang, Jing</creatorcontrib><creatorcontrib>Chen, Shuang</creatorcontrib><creatorcontrib>Luo, Junhua</creatorcontrib><creatorcontrib>Li, Lina</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lei</au><au>Wu, Chenhua</au><au>Xu, Zhijin</au><au>Wu, Huajie</au><au>Dong, Xin</au><au>Chen, Tianqi</au><au>Liang, Jing</au><au>Chen, Shuang</au><au>Luo, Junhua</au><au>Li, Lina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Realization of High‐Performance Self‐Powered Polarized Photodetection with Large Temperature Window in a 2D Polar Perovskite</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>20</volume><issue>23</issue><spage>e2310166</spage><epage>n/a</epage><pages>e2310166-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Polarization photodetection taking advantage of the anisotropy of 2D materials shines brilliantly in optoelectronic fields owing to differentiating optical information. However, the previously reported polarization detections are mostly dependent on external power sources, which is not conducive to device integration and energy conservation. Herein, a 2D polar perovskite (CBA)2CsPb2Br7 (CCPB, CBA = 4‐chlorobenzyllamine) has been successfully synthesized, which shows anticipated bulk photovoltaic effect (BPVE) with an open‐circuited photovoltage up to ≈0.2 V. Devices based on CCPB monomorph fulfill a fascinating self‐powered polarized photodetection with a large polarization ratio of 2.7 at room temperature. Moreover, CCPB features a high phase‐transition temperature (≈475 K) which prompts such self‐powered polarized photodetection in a large temperature window of device operation, since BPVE generated by spontaneous polarization can only exist in the polar structure prior to the phase transition. Further computational investigation reveals the introduction of CBA+ with a large dipole moment contributes to quite large polarization (17.5 µC cm−2) and further super high phase transition temperature of CCPB. This study will promote the application of 2D perovskite materials for self‐powered polarized photodetection in high‐temperature conditions. A 2D polar perovskite showing high‐performance self‐powered polarized photodetection is acquired. Moreover, its high phase‐transition temperature (≈475 K) endows such self‐powered polarized photodetection in a large temperature window of device operation. The work will shed bright light on the design of novel polar perovskites for self‐powered polarized photodetection in high operating temperature to reduce the external environmental restriction.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38145326</pmid><doi>10.1002/smll.202310166</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7673-7979</orcidid><orcidid>https://orcid.org/0000-0002-9736-7479</orcidid><orcidid>https://orcid.org/0000-0003-1334-2213</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-06, Vol.20 (23), p.e2310166-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2905781671
source Wiley Online Library Journals Frontfile Complete
subjects Anisotropy
bulk photovoltaic effect
Dipole moments
high phase‐transition temperature
Optoelectronics
Perovskites
Phase transitions
Photovoltaic effect
Polarization
polarized photodetection
Power sources
Room temperature
self‐powered photodetection
Transition temperature
Two dimensional materials
title Realization of High‐Performance Self‐Powered Polarized Photodetection with Large Temperature Window in a 2D Polar Perovskite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A38%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Realization%20of%20High%E2%80%90Performance%20Self%E2%80%90Powered%20Polarized%20Photodetection%20with%20Large%20Temperature%20Window%20in%20a%202D%20Polar%20Perovskite&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Wang,%20Lei&rft.date=2024-06-01&rft.volume=20&rft.issue=23&rft.spage=e2310166&rft.epage=n/a&rft.pages=e2310166-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202310166&rft_dat=%3Cproquest_cross%3E3064726285%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064726285&rft_id=info:pmid/38145326&rfr_iscdi=true