Realization of High‐Performance Self‐Powered Polarized Photodetection with Large Temperature Window in a 2D Polar Perovskite
Polarization photodetection taking advantage of the anisotropy of 2D materials shines brilliantly in optoelectronic fields owing to differentiating optical information. However, the previously reported polarization detections are mostly dependent on external power sources, which is not conducive to...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-06, Vol.20 (23), p.e2310166-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 23 |
container_start_page | e2310166 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 20 |
creator | Wang, Lei Wu, Chenhua Xu, Zhijin Wu, Huajie Dong, Xin Chen, Tianqi Liang, Jing Chen, Shuang Luo, Junhua Li, Lina |
description | Polarization photodetection taking advantage of the anisotropy of 2D materials shines brilliantly in optoelectronic fields owing to differentiating optical information. However, the previously reported polarization detections are mostly dependent on external power sources, which is not conducive to device integration and energy conservation. Herein, a 2D polar perovskite (CBA)2CsPb2Br7 (CCPB, CBA = 4‐chlorobenzyllamine) has been successfully synthesized, which shows anticipated bulk photovoltaic effect (BPVE) with an open‐circuited photovoltage up to ≈0.2 V. Devices based on CCPB monomorph fulfill a fascinating self‐powered polarized photodetection with a large polarization ratio of 2.7 at room temperature. Moreover, CCPB features a high phase‐transition temperature (≈475 K) which prompts such self‐powered polarized photodetection in a large temperature window of device operation, since BPVE generated by spontaneous polarization can only exist in the polar structure prior to the phase transition. Further computational investigation reveals the introduction of CBA+ with a large dipole moment contributes to quite large polarization (17.5 µC cm−2) and further super high phase transition temperature of CCPB. This study will promote the application of 2D perovskite materials for self‐powered polarized photodetection in high‐temperature conditions.
A 2D polar perovskite showing high‐performance self‐powered polarized photodetection is acquired. Moreover, its high phase‐transition temperature (≈475 K) endows such self‐powered polarized photodetection in a large temperature window of device operation. The work will shed bright light on the design of novel polar perovskites for self‐powered polarized photodetection in high operating temperature to reduce the external environmental restriction. |
doi_str_mv | 10.1002/smll.202310166 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2905781671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064726285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3736-66b102c72ff3a221af3e9d1e310f1c56069fa6168c80171e1d55f8627854dacc3</originalsourceid><addsrcrecordid>eNqFkc1O3DAURi0E4q_dskSW2HQzg689cZJlBS1UCgIVqi4t41wzBice7KSjYcUj9Bn7JM0wMEjddOUr63xH9-oj5ADYGBjjx6nxfswZF8BAyg2yCxLESBa83FzPwHbIXkr3jAngk3yb7IgCJpngcpc8f0ft3ZPuXGhpsPTc3U3_PP--wmhDbHRrkF6jt8uvMMeINb0KXkf3tJymoQs1dmhe0nPXTWml4x3SG2xmGHXXR6Q_XVuHOXUt1ZSfruJ08Idf6cF1-IFsWe0Tfnx998mPr19uTs5H1eXZt5PP1ciIXMiRlLfAuMm5tUJzDtoKLGvA4W4LJpNMllZLkIUpGOSAUGeZLSTPi2xSa2PEPvm08s5ieOwxdapxyaD3usXQJ8VLluUFyBwG9Ogf9D70sR22U4LJSc4lL7KBGq8oE0NKEa2aRdfouFDA1LIbtexGrbsZAoev2v62wXqNv5UxAOUKmDuPi__o1PVFVb3L_wLfFp18</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064726285</pqid></control><display><type>article</type><title>Realization of High‐Performance Self‐Powered Polarized Photodetection with Large Temperature Window in a 2D Polar Perovskite</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Lei ; Wu, Chenhua ; Xu, Zhijin ; Wu, Huajie ; Dong, Xin ; Chen, Tianqi ; Liang, Jing ; Chen, Shuang ; Luo, Junhua ; Li, Lina</creator><creatorcontrib>Wang, Lei ; Wu, Chenhua ; Xu, Zhijin ; Wu, Huajie ; Dong, Xin ; Chen, Tianqi ; Liang, Jing ; Chen, Shuang ; Luo, Junhua ; Li, Lina</creatorcontrib><description>Polarization photodetection taking advantage of the anisotropy of 2D materials shines brilliantly in optoelectronic fields owing to differentiating optical information. However, the previously reported polarization detections are mostly dependent on external power sources, which is not conducive to device integration and energy conservation. Herein, a 2D polar perovskite (CBA)2CsPb2Br7 (CCPB, CBA = 4‐chlorobenzyllamine) has been successfully synthesized, which shows anticipated bulk photovoltaic effect (BPVE) with an open‐circuited photovoltage up to ≈0.2 V. Devices based on CCPB monomorph fulfill a fascinating self‐powered polarized photodetection with a large polarization ratio of 2.7 at room temperature. Moreover, CCPB features a high phase‐transition temperature (≈475 K) which prompts such self‐powered polarized photodetection in a large temperature window of device operation, since BPVE generated by spontaneous polarization can only exist in the polar structure prior to the phase transition. Further computational investigation reveals the introduction of CBA+ with a large dipole moment contributes to quite large polarization (17.5 µC cm−2) and further super high phase transition temperature of CCPB. This study will promote the application of 2D perovskite materials for self‐powered polarized photodetection in high‐temperature conditions.
A 2D polar perovskite showing high‐performance self‐powered polarized photodetection is acquired. Moreover, its high phase‐transition temperature (≈475 K) endows such self‐powered polarized photodetection in a large temperature window of device operation. The work will shed bright light on the design of novel polar perovskites for self‐powered polarized photodetection in high operating temperature to reduce the external environmental restriction.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202310166</identifier><identifier>PMID: 38145326</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Anisotropy ; bulk photovoltaic effect ; Dipole moments ; high phase‐transition temperature ; Optoelectronics ; Perovskites ; Phase transitions ; Photovoltaic effect ; Polarization ; polarized photodetection ; Power sources ; Room temperature ; self‐powered photodetection ; Transition temperature ; Two dimensional materials</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-06, Vol.20 (23), p.e2310166-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3736-66b102c72ff3a221af3e9d1e310f1c56069fa6168c80171e1d55f8627854dacc3</citedby><cites>FETCH-LOGICAL-c3736-66b102c72ff3a221af3e9d1e310f1c56069fa6168c80171e1d55f8627854dacc3</cites><orcidid>0000-0002-7673-7979 ; 0000-0002-9736-7479 ; 0000-0003-1334-2213</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202310166$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202310166$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38145326$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Wu, Chenhua</creatorcontrib><creatorcontrib>Xu, Zhijin</creatorcontrib><creatorcontrib>Wu, Huajie</creatorcontrib><creatorcontrib>Dong, Xin</creatorcontrib><creatorcontrib>Chen, Tianqi</creatorcontrib><creatorcontrib>Liang, Jing</creatorcontrib><creatorcontrib>Chen, Shuang</creatorcontrib><creatorcontrib>Luo, Junhua</creatorcontrib><creatorcontrib>Li, Lina</creatorcontrib><title>Realization of High‐Performance Self‐Powered Polarized Photodetection with Large Temperature Window in a 2D Polar Perovskite</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Polarization photodetection taking advantage of the anisotropy of 2D materials shines brilliantly in optoelectronic fields owing to differentiating optical information. However, the previously reported polarization detections are mostly dependent on external power sources, which is not conducive to device integration and energy conservation. Herein, a 2D polar perovskite (CBA)2CsPb2Br7 (CCPB, CBA = 4‐chlorobenzyllamine) has been successfully synthesized, which shows anticipated bulk photovoltaic effect (BPVE) with an open‐circuited photovoltage up to ≈0.2 V. Devices based on CCPB monomorph fulfill a fascinating self‐powered polarized photodetection with a large polarization ratio of 2.7 at room temperature. Moreover, CCPB features a high phase‐transition temperature (≈475 K) which prompts such self‐powered polarized photodetection in a large temperature window of device operation, since BPVE generated by spontaneous polarization can only exist in the polar structure prior to the phase transition. Further computational investigation reveals the introduction of CBA+ with a large dipole moment contributes to quite large polarization (17.5 µC cm−2) and further super high phase transition temperature of CCPB. This study will promote the application of 2D perovskite materials for self‐powered polarized photodetection in high‐temperature conditions.
A 2D polar perovskite showing high‐performance self‐powered polarized photodetection is acquired. Moreover, its high phase‐transition temperature (≈475 K) endows such self‐powered polarized photodetection in a large temperature window of device operation. The work will shed bright light on the design of novel polar perovskites for self‐powered polarized photodetection in high operating temperature to reduce the external environmental restriction.</description><subject>Anisotropy</subject><subject>bulk photovoltaic effect</subject><subject>Dipole moments</subject><subject>high phase‐transition temperature</subject><subject>Optoelectronics</subject><subject>Perovskites</subject><subject>Phase transitions</subject><subject>Photovoltaic effect</subject><subject>Polarization</subject><subject>polarized photodetection</subject><subject>Power sources</subject><subject>Room temperature</subject><subject>self‐powered photodetection</subject><subject>Transition temperature</subject><subject>Two dimensional materials</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc1O3DAURi0E4q_dskSW2HQzg689cZJlBS1UCgIVqi4t41wzBice7KSjYcUj9Bn7JM0wMEjddOUr63xH9-oj5ADYGBjjx6nxfswZF8BAyg2yCxLESBa83FzPwHbIXkr3jAngk3yb7IgCJpngcpc8f0ft3ZPuXGhpsPTc3U3_PP--wmhDbHRrkF6jt8uvMMeINb0KXkf3tJymoQs1dmhe0nPXTWml4x3SG2xmGHXXR6Q_XVuHOXUt1ZSfruJ08Idf6cF1-IFsWe0Tfnx998mPr19uTs5H1eXZt5PP1ciIXMiRlLfAuMm5tUJzDtoKLGvA4W4LJpNMllZLkIUpGOSAUGeZLSTPi2xSa2PEPvm08s5ieOwxdapxyaD3usXQJ8VLluUFyBwG9Ogf9D70sR22U4LJSc4lL7KBGq8oE0NKEa2aRdfouFDA1LIbtexGrbsZAoev2v62wXqNv5UxAOUKmDuPi__o1PVFVb3L_wLfFp18</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Wang, Lei</creator><creator>Wu, Chenhua</creator><creator>Xu, Zhijin</creator><creator>Wu, Huajie</creator><creator>Dong, Xin</creator><creator>Chen, Tianqi</creator><creator>Liang, Jing</creator><creator>Chen, Shuang</creator><creator>Luo, Junhua</creator><creator>Li, Lina</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7673-7979</orcidid><orcidid>https://orcid.org/0000-0002-9736-7479</orcidid><orcidid>https://orcid.org/0000-0003-1334-2213</orcidid></search><sort><creationdate>20240601</creationdate><title>Realization of High‐Performance Self‐Powered Polarized Photodetection with Large Temperature Window in a 2D Polar Perovskite</title><author>Wang, Lei ; Wu, Chenhua ; Xu, Zhijin ; Wu, Huajie ; Dong, Xin ; Chen, Tianqi ; Liang, Jing ; Chen, Shuang ; Luo, Junhua ; Li, Lina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3736-66b102c72ff3a221af3e9d1e310f1c56069fa6168c80171e1d55f8627854dacc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anisotropy</topic><topic>bulk photovoltaic effect</topic><topic>Dipole moments</topic><topic>high phase‐transition temperature</topic><topic>Optoelectronics</topic><topic>Perovskites</topic><topic>Phase transitions</topic><topic>Photovoltaic effect</topic><topic>Polarization</topic><topic>polarized photodetection</topic><topic>Power sources</topic><topic>Room temperature</topic><topic>self‐powered photodetection</topic><topic>Transition temperature</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Wu, Chenhua</creatorcontrib><creatorcontrib>Xu, Zhijin</creatorcontrib><creatorcontrib>Wu, Huajie</creatorcontrib><creatorcontrib>Dong, Xin</creatorcontrib><creatorcontrib>Chen, Tianqi</creatorcontrib><creatorcontrib>Liang, Jing</creatorcontrib><creatorcontrib>Chen, Shuang</creatorcontrib><creatorcontrib>Luo, Junhua</creatorcontrib><creatorcontrib>Li, Lina</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lei</au><au>Wu, Chenhua</au><au>Xu, Zhijin</au><au>Wu, Huajie</au><au>Dong, Xin</au><au>Chen, Tianqi</au><au>Liang, Jing</au><au>Chen, Shuang</au><au>Luo, Junhua</au><au>Li, Lina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Realization of High‐Performance Self‐Powered Polarized Photodetection with Large Temperature Window in a 2D Polar Perovskite</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>20</volume><issue>23</issue><spage>e2310166</spage><epage>n/a</epage><pages>e2310166-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Polarization photodetection taking advantage of the anisotropy of 2D materials shines brilliantly in optoelectronic fields owing to differentiating optical information. However, the previously reported polarization detections are mostly dependent on external power sources, which is not conducive to device integration and energy conservation. Herein, a 2D polar perovskite (CBA)2CsPb2Br7 (CCPB, CBA = 4‐chlorobenzyllamine) has been successfully synthesized, which shows anticipated bulk photovoltaic effect (BPVE) with an open‐circuited photovoltage up to ≈0.2 V. Devices based on CCPB monomorph fulfill a fascinating self‐powered polarized photodetection with a large polarization ratio of 2.7 at room temperature. Moreover, CCPB features a high phase‐transition temperature (≈475 K) which prompts such self‐powered polarized photodetection in a large temperature window of device operation, since BPVE generated by spontaneous polarization can only exist in the polar structure prior to the phase transition. Further computational investigation reveals the introduction of CBA+ with a large dipole moment contributes to quite large polarization (17.5 µC cm−2) and further super high phase transition temperature of CCPB. This study will promote the application of 2D perovskite materials for self‐powered polarized photodetection in high‐temperature conditions.
A 2D polar perovskite showing high‐performance self‐powered polarized photodetection is acquired. Moreover, its high phase‐transition temperature (≈475 K) endows such self‐powered polarized photodetection in a large temperature window of device operation. The work will shed bright light on the design of novel polar perovskites for self‐powered polarized photodetection in high operating temperature to reduce the external environmental restriction.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38145326</pmid><doi>10.1002/smll.202310166</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7673-7979</orcidid><orcidid>https://orcid.org/0000-0002-9736-7479</orcidid><orcidid>https://orcid.org/0000-0003-1334-2213</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2024-06, Vol.20 (23), p.e2310166-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2905781671 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Anisotropy bulk photovoltaic effect Dipole moments high phase‐transition temperature Optoelectronics Perovskites Phase transitions Photovoltaic effect Polarization polarized photodetection Power sources Room temperature self‐powered photodetection Transition temperature Two dimensional materials |
title | Realization of High‐Performance Self‐Powered Polarized Photodetection with Large Temperature Window in a 2D Polar Perovskite |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A38%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Realization%20of%20High%E2%80%90Performance%20Self%E2%80%90Powered%20Polarized%20Photodetection%20with%20Large%20Temperature%20Window%20in%20a%202D%20Polar%20Perovskite&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Wang,%20Lei&rft.date=2024-06-01&rft.volume=20&rft.issue=23&rft.spage=e2310166&rft.epage=n/a&rft.pages=e2310166-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202310166&rft_dat=%3Cproquest_cross%3E3064726285%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064726285&rft_id=info:pmid/38145326&rfr_iscdi=true |