Controlling Uncertainty of Empirical First-Passage Times in the Small-Sample Regime

We derive general bounds on the probability that the empirical first-passage time τ[over ¯]_{n}≡∑_{i=1}^{n}τ_{i}/n of a reversible ergodic Markov process inferred from a sample of n independent realizations deviates from the true mean first-passage time by more than any given amount in either direct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2023-12, Vol.131 (23), p.237101-237101, Article 237101
Hauptverfasser: Bebon, Rick, Godec, Aljaž
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 237101
container_issue 23
container_start_page 237101
container_title Physical review letters
container_volume 131
creator Bebon, Rick
Godec, Aljaž
description We derive general bounds on the probability that the empirical first-passage time τ[over ¯]_{n}≡∑_{i=1}^{n}τ_{i}/n of a reversible ergodic Markov process inferred from a sample of n independent realizations deviates from the true mean first-passage time by more than any given amount in either direction. We construct nonasymptotic confidence intervals that hold in the elusive small-sample regime and thus fill the gap between asymptotic methods and the Bayesian approach that is known to be sensitive to prior belief and tends to underestimate uncertainty in the small-sample setting. We prove sharp bounds on extreme first-passage times that control uncertainty even in cases where the mean alone does not sufficiently characterize the statistics. Our concentration-of-measure-based results allow for model-free error control and reliable error estimation in kinetic inference, and are thus important for the analysis of experimental and simulation data in the presence of limited sampling.
doi_str_mv 10.1103/PhysRevLett.131.237101
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2905519126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2905519126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-70cacab374c1fc9b2b2447561eeef2909679e8f885d8f8ffe21cbba59c3d95c63</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhC0EoqXwFyofuaR44ySOj6hqAakSVR_nyHE3rZHzwHaR-u8JakFcdg87M6v5CBkDmwAw_rQ8nPwKvxYYwgQ4TGIugMEVGQITMhIAyTUZMsYhkoyJAbnz_oMxBnGW35IBz4EnIo-HZD1tm-Baa02zp9tGowvKNOFE24rO6s44o5Wlc-N8iJbKe7VHujE1emoaGg5I17WyNlqrurNIV7jvb_fkplLW48Nlj8h2PttMX6PF-8vb9HkRac6yEAmmlVYlF4mGSssyLuMkEWkGiFjFkslMSMyrPE93_awqjEGXpUql5juZ6oyPyOM5t3Pt5xF9KGrjNVqrGmyPvugz0hRk37mXZmepdq33Dquic6ZW7lQAK36AFv-AFj3Q4gy0N44vP45ljbs_2y9B_g3NA3Vg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2905519126</pqid></control><display><type>article</type><title>Controlling Uncertainty of Empirical First-Passage Times in the Small-Sample Regime</title><source>American Physical Society Journals</source><source>EZB Electronic Journals Library</source><creator>Bebon, Rick ; Godec, Aljaž</creator><creatorcontrib>Bebon, Rick ; Godec, Aljaž</creatorcontrib><description>We derive general bounds on the probability that the empirical first-passage time τ[over ¯]_{n}≡∑_{i=1}^{n}τ_{i}/n of a reversible ergodic Markov process inferred from a sample of n independent realizations deviates from the true mean first-passage time by more than any given amount in either direction. We construct nonasymptotic confidence intervals that hold in the elusive small-sample regime and thus fill the gap between asymptotic methods and the Bayesian approach that is known to be sensitive to prior belief and tends to underestimate uncertainty in the small-sample setting. We prove sharp bounds on extreme first-passage times that control uncertainty even in cases where the mean alone does not sufficiently characterize the statistics. Our concentration-of-measure-based results allow for model-free error control and reliable error estimation in kinetic inference, and are thus important for the analysis of experimental and simulation data in the presence of limited sampling.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.131.237101</identifier><identifier>PMID: 38134782</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2023-12, Vol.131 (23), p.237101-237101, Article 237101</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c306t-70cacab374c1fc9b2b2447561eeef2909679e8f885d8f8ffe21cbba59c3d95c63</cites><orcidid>0000-0003-1888-6666 ; 0000-0003-2187-0008</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38134782$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bebon, Rick</creatorcontrib><creatorcontrib>Godec, Aljaž</creatorcontrib><title>Controlling Uncertainty of Empirical First-Passage Times in the Small-Sample Regime</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We derive general bounds on the probability that the empirical first-passage time τ[over ¯]_{n}≡∑_{i=1}^{n}τ_{i}/n of a reversible ergodic Markov process inferred from a sample of n independent realizations deviates from the true mean first-passage time by more than any given amount in either direction. We construct nonasymptotic confidence intervals that hold in the elusive small-sample regime and thus fill the gap between asymptotic methods and the Bayesian approach that is known to be sensitive to prior belief and tends to underestimate uncertainty in the small-sample setting. We prove sharp bounds on extreme first-passage times that control uncertainty even in cases where the mean alone does not sufficiently characterize the statistics. Our concentration-of-measure-based results allow for model-free error control and reliable error estimation in kinetic inference, and are thus important for the analysis of experimental and simulation data in the presence of limited sampling.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkEtPwzAQhC0EoqXwFyofuaR44ySOj6hqAakSVR_nyHE3rZHzwHaR-u8JakFcdg87M6v5CBkDmwAw_rQ8nPwKvxYYwgQ4TGIugMEVGQITMhIAyTUZMsYhkoyJAbnz_oMxBnGW35IBz4EnIo-HZD1tm-Baa02zp9tGowvKNOFE24rO6s44o5Wlc-N8iJbKe7VHujE1emoaGg5I17WyNlqrurNIV7jvb_fkplLW48Nlj8h2PttMX6PF-8vb9HkRac6yEAmmlVYlF4mGSssyLuMkEWkGiFjFkslMSMyrPE93_awqjEGXpUql5juZ6oyPyOM5t3Pt5xF9KGrjNVqrGmyPvugz0hRk37mXZmepdq33Dquic6ZW7lQAK36AFv-AFj3Q4gy0N44vP45ljbs_2y9B_g3NA3Vg</recordid><startdate>20231208</startdate><enddate>20231208</enddate><creator>Bebon, Rick</creator><creator>Godec, Aljaž</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1888-6666</orcidid><orcidid>https://orcid.org/0000-0003-2187-0008</orcidid></search><sort><creationdate>20231208</creationdate><title>Controlling Uncertainty of Empirical First-Passage Times in the Small-Sample Regime</title><author>Bebon, Rick ; Godec, Aljaž</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-70cacab374c1fc9b2b2447561eeef2909679e8f885d8f8ffe21cbba59c3d95c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bebon, Rick</creatorcontrib><creatorcontrib>Godec, Aljaž</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bebon, Rick</au><au>Godec, Aljaž</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling Uncertainty of Empirical First-Passage Times in the Small-Sample Regime</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2023-12-08</date><risdate>2023</risdate><volume>131</volume><issue>23</issue><spage>237101</spage><epage>237101</epage><pages>237101-237101</pages><artnum>237101</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We derive general bounds on the probability that the empirical first-passage time τ[over ¯]_{n}≡∑_{i=1}^{n}τ_{i}/n of a reversible ergodic Markov process inferred from a sample of n independent realizations deviates from the true mean first-passage time by more than any given amount in either direction. We construct nonasymptotic confidence intervals that hold in the elusive small-sample regime and thus fill the gap between asymptotic methods and the Bayesian approach that is known to be sensitive to prior belief and tends to underestimate uncertainty in the small-sample setting. We prove sharp bounds on extreme first-passage times that control uncertainty even in cases where the mean alone does not sufficiently characterize the statistics. Our concentration-of-measure-based results allow for model-free error control and reliable error estimation in kinetic inference, and are thus important for the analysis of experimental and simulation data in the presence of limited sampling.</abstract><cop>United States</cop><pmid>38134782</pmid><doi>10.1103/PhysRevLett.131.237101</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1888-6666</orcidid><orcidid>https://orcid.org/0000-0003-2187-0008</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2023-12, Vol.131 (23), p.237101-237101, Article 237101
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_2905519126
source American Physical Society Journals; EZB Electronic Journals Library
title Controlling Uncertainty of Empirical First-Passage Times in the Small-Sample Regime
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T15%3A47%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20Uncertainty%20of%20Empirical%20First-Passage%20Times%20in%20the%20Small-Sample%20Regime&rft.jtitle=Physical%20review%20letters&rft.au=Bebon,%20Rick&rft.date=2023-12-08&rft.volume=131&rft.issue=23&rft.spage=237101&rft.epage=237101&rft.pages=237101-237101&rft.artnum=237101&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.131.237101&rft_dat=%3Cproquest_cross%3E2905519126%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2905519126&rft_id=info:pmid/38134782&rfr_iscdi=true