Isotopomer fractionation in the UV photolysis of N2O: Comparison of theory and experiment

In the photodissociation of N2O, absorption cross sections differ with isotopic substitution, leading to a wavelength‐dependent fractionation of the various isotopomers. Several models ranging from shifts by zero‐point energy differences to propagation of wave packets on the excited electronic state...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research. D. Atmospheres 2005-11, Vol.110 (D21), p.D21315.1-n/a
Hauptverfasser: Prakash, Meher K., Weibel, Jason D., Marcus, R. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue D21
container_start_page D21315.1
container_title Journal of Geophysical Research. D. Atmospheres
container_volume 110
creator Prakash, Meher K.
Weibel, Jason D.
Marcus, R. A.
description In the photodissociation of N2O, absorption cross sections differ with isotopic substitution, leading to a wavelength‐dependent fractionation of the various isotopomers. Several models ranging from shifts by zero‐point energy differences to propagation of wave packets on the excited electronic state potential energy surface have been proposed to explain the observed fractionations. We present time‐independent fractionation calculations for the isotopomers 447, 448, 456, 546, and 556. Besides largely agreeing with the experimental data, these calculations have the advantage of not being computationally intensive, as well as satisfying the physical facts that the asymmetric stretch and the doubly degenerate bending vibration are the principal Franck‐Condon active modes in the photodissociation. The latter is reflected in the actual dissociation and in the high rotational excitation and lack of vibrational excitation of the N2 product. The calculations are based on a multidimensional reflection principle using an ab initio potential energy surface. The theory for the absorption cross section and isotopomer fractionation accompanying photodissociation is described. The absolute value of the theoretically calculated absorption cross section is very close (90%) to the experimentally observed value. The present computations also provide data for the slope of a three‐isotope plot of the fractionation of 447/446 relative to 448/446, using the fractionations at different wavelengths. The resulting slope is compared with a perturbation theoretical expression for direct photodissociation given elsewhere.
doi_str_mv 10.1029/2005JD006127
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_29049659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29049659</sourcerecordid><originalsourceid>FETCH-LOGICAL-i4336-4c3f70376462497d229dee6d59d64edddec2949ac2fbd8b15ae98867fb2e97893</originalsourceid><addsrcrecordid>eNqNkcFOGzEQhq2KSkQpNx7Al_a2dDz22uveUEICKAIJAS0ny1l7hWGzXtaLSt6-RkHAsXP4R5r5_pFmhpBDBkcMUP9EgPJ8DiAZqi9kgqyUBSLgHpkAE1UBiGqfHKT0ADlEKQWwCbk7S3GMfdz4gTaDrccQO_sqNHR0vPf05pb29xlptykkGht6gZe_6CxuejuElLlcylwcttR2jvqX3g9h47vxG_na2Db5g7c8JTeLk-vZabG6XJ7NjldFEJzLQtS8UcCVFBKFVg5RO--lK7WTwjvnfI1aaFtjs3bVmpXW66qSqlmj16rSfEp-7Ob2Q3x69mk0m5Bq37a28_E5GdQgtCz_A6xA8wogg9_fQJtq2-azdHVIps972WFrmMoUzzolfMf9Da3ffvTBvD7EfH6IOV9ezRliJbOr2LlCGv3Lu8sOj0Yqrkrz-2JpTuditbi-XZg__B975Y4B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28093800</pqid></control><display><type>article</type><title>Isotopomer fractionation in the UV photolysis of N2O: Comparison of theory and experiment</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Prakash, Meher K. ; Weibel, Jason D. ; Marcus, R. A.</creator><creatorcontrib>Prakash, Meher K. ; Weibel, Jason D. ; Marcus, R. A.</creatorcontrib><description>In the photodissociation of N2O, absorption cross sections differ with isotopic substitution, leading to a wavelength‐dependent fractionation of the various isotopomers. Several models ranging from shifts by zero‐point energy differences to propagation of wave packets on the excited electronic state potential energy surface have been proposed to explain the observed fractionations. We present time‐independent fractionation calculations for the isotopomers 447, 448, 456, 546, and 556. Besides largely agreeing with the experimental data, these calculations have the advantage of not being computationally intensive, as well as satisfying the physical facts that the asymmetric stretch and the doubly degenerate bending vibration are the principal Franck‐Condon active modes in the photodissociation. The latter is reflected in the actual dissociation and in the high rotational excitation and lack of vibrational excitation of the N2 product. The calculations are based on a multidimensional reflection principle using an ab initio potential energy surface. The theory for the absorption cross section and isotopomer fractionation accompanying photodissociation is described. The absolute value of the theoretically calculated absorption cross section is very close (90%) to the experimentally observed value. The present computations also provide data for the slope of a three‐isotope plot of the fractionation of 447/446 relative to 448/446, using the fractionations at different wavelengths. The resulting slope is compared with a perturbation theoretical expression for direct photodissociation given elsewhere.</description><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1029/2005JD006127</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>absorption cross section ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; fractionation ; isotopomers ; N2O ; photodissociation ; three-isotope plot</subject><ispartof>Journal of Geophysical Research. D. Atmospheres, 2005-11, Vol.110 (D21), p.D21315.1-n/a</ispartof><rights>Copyright 2005 by the American Geophysical Union.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2005JD006127$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2005JD006127$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,1432,11513,27923,27924,45573,45574,46408,46467,46832,46891</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17380317$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Prakash, Meher K.</creatorcontrib><creatorcontrib>Weibel, Jason D.</creatorcontrib><creatorcontrib>Marcus, R. A.</creatorcontrib><title>Isotopomer fractionation in the UV photolysis of N2O: Comparison of theory and experiment</title><title>Journal of Geophysical Research. D. Atmospheres</title><addtitle>J. Geophys. Res</addtitle><description>In the photodissociation of N2O, absorption cross sections differ with isotopic substitution, leading to a wavelength‐dependent fractionation of the various isotopomers. Several models ranging from shifts by zero‐point energy differences to propagation of wave packets on the excited electronic state potential energy surface have been proposed to explain the observed fractionations. We present time‐independent fractionation calculations for the isotopomers 447, 448, 456, 546, and 556. Besides largely agreeing with the experimental data, these calculations have the advantage of not being computationally intensive, as well as satisfying the physical facts that the asymmetric stretch and the doubly degenerate bending vibration are the principal Franck‐Condon active modes in the photodissociation. The latter is reflected in the actual dissociation and in the high rotational excitation and lack of vibrational excitation of the N2 product. The calculations are based on a multidimensional reflection principle using an ab initio potential energy surface. The theory for the absorption cross section and isotopomer fractionation accompanying photodissociation is described. The absolute value of the theoretically calculated absorption cross section is very close (90%) to the experimentally observed value. The present computations also provide data for the slope of a three‐isotope plot of the fractionation of 447/446 relative to 448/446, using the fractionations at different wavelengths. The resulting slope is compared with a perturbation theoretical expression for direct photodissociation given elsewhere.</description><subject>absorption cross section</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>fractionation</subject><subject>isotopomers</subject><subject>N2O</subject><subject>photodissociation</subject><subject>three-isotope plot</subject><issn>0148-0227</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkcFOGzEQhq2KSkQpNx7Al_a2dDz22uveUEICKAIJAS0ny1l7hWGzXtaLSt6-RkHAsXP4R5r5_pFmhpBDBkcMUP9EgPJ8DiAZqi9kgqyUBSLgHpkAE1UBiGqfHKT0ADlEKQWwCbk7S3GMfdz4gTaDrccQO_sqNHR0vPf05pb29xlptykkGht6gZe_6CxuejuElLlcylwcttR2jvqX3g9h47vxG_na2Db5g7c8JTeLk-vZabG6XJ7NjldFEJzLQtS8UcCVFBKFVg5RO--lK7WTwjvnfI1aaFtjs3bVmpXW66qSqlmj16rSfEp-7Ob2Q3x69mk0m5Bq37a28_E5GdQgtCz_A6xA8wogg9_fQJtq2-azdHVIps972WFrmMoUzzolfMf9Da3ffvTBvD7EfH6IOV9ezRliJbOr2LlCGv3Lu8sOj0Yqrkrz-2JpTuditbi-XZg__B975Y4B</recordid><startdate>20051116</startdate><enddate>20051116</enddate><creator>Prakash, Meher K.</creator><creator>Weibel, Jason D.</creator><creator>Marcus, R. A.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20051116</creationdate><title>Isotopomer fractionation in the UV photolysis of N2O: Comparison of theory and experiment</title><author>Prakash, Meher K. ; Weibel, Jason D. ; Marcus, R. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i4336-4c3f70376462497d229dee6d59d64edddec2949ac2fbd8b15ae98867fb2e97893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>absorption cross section</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>fractionation</topic><topic>isotopomers</topic><topic>N2O</topic><topic>photodissociation</topic><topic>three-isotope plot</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prakash, Meher K.</creatorcontrib><creatorcontrib>Weibel, Jason D.</creatorcontrib><creatorcontrib>Marcus, R. A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of Geophysical Research. D. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prakash, Meher K.</au><au>Weibel, Jason D.</au><au>Marcus, R. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isotopomer fractionation in the UV photolysis of N2O: Comparison of theory and experiment</atitle><jtitle>Journal of Geophysical Research. D. Atmospheres</jtitle><addtitle>J. Geophys. Res</addtitle><date>2005-11-16</date><risdate>2005</risdate><volume>110</volume><issue>D21</issue><spage>D21315.1</spage><epage>n/a</epage><pages>D21315.1-n/a</pages><issn>0148-0227</issn><eissn>2156-2202</eissn><abstract>In the photodissociation of N2O, absorption cross sections differ with isotopic substitution, leading to a wavelength‐dependent fractionation of the various isotopomers. Several models ranging from shifts by zero‐point energy differences to propagation of wave packets on the excited electronic state potential energy surface have been proposed to explain the observed fractionations. We present time‐independent fractionation calculations for the isotopomers 447, 448, 456, 546, and 556. Besides largely agreeing with the experimental data, these calculations have the advantage of not being computationally intensive, as well as satisfying the physical facts that the asymmetric stretch and the doubly degenerate bending vibration are the principal Franck‐Condon active modes in the photodissociation. The latter is reflected in the actual dissociation and in the high rotational excitation and lack of vibrational excitation of the N2 product. The calculations are based on a multidimensional reflection principle using an ab initio potential energy surface. The theory for the absorption cross section and isotopomer fractionation accompanying photodissociation is described. The absolute value of the theoretically calculated absorption cross section is very close (90%) to the experimentally observed value. The present computations also provide data for the slope of a three‐isotope plot of the fractionation of 447/446 relative to 448/446, using the fractionations at different wavelengths. The resulting slope is compared with a perturbation theoretical expression for direct photodissociation given elsewhere.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2005JD006127</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research. D. Atmospheres, 2005-11, Vol.110 (D21), p.D21315.1-n/a
issn 0148-0227
2156-2202
language eng
recordid cdi_proquest_miscellaneous_29049659
source Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library All Journals; Alma/SFX Local Collection
subjects absorption cross section
Earth sciences
Earth, ocean, space
Exact sciences and technology
fractionation
isotopomers
N2O
photodissociation
three-isotope plot
title Isotopomer fractionation in the UV photolysis of N2O: Comparison of theory and experiment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T11%3A05%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isotopomer%20fractionation%20in%20the%20UV%20photolysis%20of%20N2O:%20Comparison%20of%20theory%20and%20experiment&rft.jtitle=Journal%20of%20Geophysical%20Research.%20D.%20Atmospheres&rft.au=Prakash,%20Meher%20K.&rft.date=2005-11-16&rft.volume=110&rft.issue=D21&rft.spage=D21315.1&rft.epage=n/a&rft.pages=D21315.1-n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2005JD006127&rft_dat=%3Cproquest_pasca%3E29049659%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28093800&rft_id=info:pmid/&rfr_iscdi=true