Pt/MnO Interface Induced Defects for High Reverse Water Gas Shift Activity
The implementation of supported metal catalysts heavily relies on the synergistic interactions between metal nanoparticles and the material they are dispersed on. It is clear that interfacial perimeter sites have outstanding skills for turning catalytic reactions over, however, high activity and sel...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2024-02, Vol.63 (8), p.e202317343-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 8 |
container_start_page | e202317343 |
container_title | Angewandte Chemie International Edition |
container_volume | 63 |
creator | Szenti, Imre Efremova, Anastasiia Kiss, János Sápi, András Óvári, László Halasi, Gyula Haselmann, Ulrich Zhang, Zaoli Morales‐Vidal, Jordi Baán, Kornélia Kukovecz, Ákos López, Núria Kónya, Zoltán |
description | The implementation of supported metal catalysts heavily relies on the synergistic interactions between metal nanoparticles and the material they are dispersed on. It is clear that interfacial perimeter sites have outstanding skills for turning catalytic reactions over, however, high activity and selectivity of the designed interface‐induced metal distortion can also obtain catalysts for the most crucial industrial processes as evidenced in this paper. Herein, the beneficial synergy established between designed Pt nanoparticles and MnO in the course of the reverse water gas shift (RWGS) reaction resulted in a Pt/MnO catalyst having ≈10 times higher activity compared to the reference Pt/SBA‐15 catalyst with >99 % CO selectivity. Under activation, a crystal assembly through the metallic Pt (110) and MnO evolved, where the plane distance differences caused a mismatched‐row structure in softer Pt nanoparticles, which was identified by microscopic and surface‐sensitive spectroscopic characterizations combined with density functional theory simulations. The generated edge dislocations caused the Pt lattice expansion which led to the weakening of the Pt−CO bond. Even though MnO also exhibited an adverse effect on Pt by lowering the number of exposed metal sites, rapid desorption of the linearly adsorbed CO species governed the performance of the Pt/MnO in the RWGS.
As the result of edge dislocations generated at the Pt/MnO interface, linearly adsorbed CO is destabilized and released fast from the Pt nanoparticle. This leads to the enhanced catalytic performance of the Pt/MnO in the RWGS reaction. |
doi_str_mv | 10.1002/anie.202317343 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2904573366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2924898481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4223-ffe623615574397e73a05fb9034cbd8f1caed4bf51b95ac27fe4eacaed39fd2b3</originalsourceid><addsrcrecordid>eNqF0ElPwzAQBWALgSgUrhyRJS5cUmyPEyfHiqUtYhOLOEaOM6ZBbQJ2UtR_j6uySFw4eWR98zR6hBxwNuCMiRNdVzgQTABXIGGD7PBY8AiUgs0wS4BIpTHvkV3vX4NPU5Zskx6knKtE8R1yedeeXNe3dFK36Kw2GKayM1jSM7RoWk9t4-i4epnSe1yg80ifdaB0pD19mFa2pUPTVouqXe6RLatnHve_3j55ujh_PB1HV7ejyenwKjJSCIisxURAwuNYScgUKtAstkXGQJqiTC03GktZ2JgXWayNUBYl6tUnZLYUBfTJ8Tr3zTXvHfo2n1fe4Gyma2w6n4uMyVgBJEmgR3_oa9O5OlwXlJBplsqUBzVYK-Ma7x3a_M1Vc-2WOWf5quV81XL-03JYOPyK7Yo5lj_8u9YAsjX4qGa4_CcuH95Mzn_DPwHGCofF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2924898481</pqid></control><display><type>article</type><title>Pt/MnO Interface Induced Defects for High Reverse Water Gas Shift Activity</title><source>Wiley Online Library</source><creator>Szenti, Imre ; Efremova, Anastasiia ; Kiss, János ; Sápi, András ; Óvári, László ; Halasi, Gyula ; Haselmann, Ulrich ; Zhang, Zaoli ; Morales‐Vidal, Jordi ; Baán, Kornélia ; Kukovecz, Ákos ; López, Núria ; Kónya, Zoltán</creator><creatorcontrib>Szenti, Imre ; Efremova, Anastasiia ; Kiss, János ; Sápi, András ; Óvári, László ; Halasi, Gyula ; Haselmann, Ulrich ; Zhang, Zaoli ; Morales‐Vidal, Jordi ; Baán, Kornélia ; Kukovecz, Ákos ; López, Núria ; Kónya, Zoltán</creatorcontrib><description>The implementation of supported metal catalysts heavily relies on the synergistic interactions between metal nanoparticles and the material they are dispersed on. It is clear that interfacial perimeter sites have outstanding skills for turning catalytic reactions over, however, high activity and selectivity of the designed interface‐induced metal distortion can also obtain catalysts for the most crucial industrial processes as evidenced in this paper. Herein, the beneficial synergy established between designed Pt nanoparticles and MnO in the course of the reverse water gas shift (RWGS) reaction resulted in a Pt/MnO catalyst having ≈10 times higher activity compared to the reference Pt/SBA‐15 catalyst with >99 % CO selectivity. Under activation, a crystal assembly through the metallic Pt (110) and MnO evolved, where the plane distance differences caused a mismatched‐row structure in softer Pt nanoparticles, which was identified by microscopic and surface‐sensitive spectroscopic characterizations combined with density functional theory simulations. The generated edge dislocations caused the Pt lattice expansion which led to the weakening of the Pt−CO bond. Even though MnO also exhibited an adverse effect on Pt by lowering the number of exposed metal sites, rapid desorption of the linearly adsorbed CO species governed the performance of the Pt/MnO in the RWGS.
As the result of edge dislocations generated at the Pt/MnO interface, linearly adsorbed CO is destabilized and released fast from the Pt nanoparticle. This leads to the enhanced catalytic performance of the Pt/MnO in the RWGS reaction.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202317343</identifier><identifier>PMID: 38117671</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Catalysts ; Crystal defects ; Density functional theory ; Edge Dislocations ; Low CO Stability ; Manganese Oxide ; Manganese oxides ; Metals ; Nanoparticles ; Pt/Mno Interface ; RWGS ; Water gas</subject><ispartof>Angewandte Chemie International Edition, 2024-02, Vol.63 (8), p.e202317343-n/a</ispartof><rights>2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH</rights><rights>2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4223-ffe623615574397e73a05fb9034cbd8f1caed4bf51b95ac27fe4eacaed39fd2b3</cites><orcidid>0000-0001-6557-0731</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202317343$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202317343$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38117671$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Szenti, Imre</creatorcontrib><creatorcontrib>Efremova, Anastasiia</creatorcontrib><creatorcontrib>Kiss, János</creatorcontrib><creatorcontrib>Sápi, András</creatorcontrib><creatorcontrib>Óvári, László</creatorcontrib><creatorcontrib>Halasi, Gyula</creatorcontrib><creatorcontrib>Haselmann, Ulrich</creatorcontrib><creatorcontrib>Zhang, Zaoli</creatorcontrib><creatorcontrib>Morales‐Vidal, Jordi</creatorcontrib><creatorcontrib>Baán, Kornélia</creatorcontrib><creatorcontrib>Kukovecz, Ákos</creatorcontrib><creatorcontrib>López, Núria</creatorcontrib><creatorcontrib>Kónya, Zoltán</creatorcontrib><title>Pt/MnO Interface Induced Defects for High Reverse Water Gas Shift Activity</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>The implementation of supported metal catalysts heavily relies on the synergistic interactions between metal nanoparticles and the material they are dispersed on. It is clear that interfacial perimeter sites have outstanding skills for turning catalytic reactions over, however, high activity and selectivity of the designed interface‐induced metal distortion can also obtain catalysts for the most crucial industrial processes as evidenced in this paper. Herein, the beneficial synergy established between designed Pt nanoparticles and MnO in the course of the reverse water gas shift (RWGS) reaction resulted in a Pt/MnO catalyst having ≈10 times higher activity compared to the reference Pt/SBA‐15 catalyst with >99 % CO selectivity. Under activation, a crystal assembly through the metallic Pt (110) and MnO evolved, where the plane distance differences caused a mismatched‐row structure in softer Pt nanoparticles, which was identified by microscopic and surface‐sensitive spectroscopic characterizations combined with density functional theory simulations. The generated edge dislocations caused the Pt lattice expansion which led to the weakening of the Pt−CO bond. Even though MnO also exhibited an adverse effect on Pt by lowering the number of exposed metal sites, rapid desorption of the linearly adsorbed CO species governed the performance of the Pt/MnO in the RWGS.
As the result of edge dislocations generated at the Pt/MnO interface, linearly adsorbed CO is destabilized and released fast from the Pt nanoparticle. This leads to the enhanced catalytic performance of the Pt/MnO in the RWGS reaction.</description><subject>Catalysts</subject><subject>Crystal defects</subject><subject>Density functional theory</subject><subject>Edge Dislocations</subject><subject>Low CO Stability</subject><subject>Manganese Oxide</subject><subject>Manganese oxides</subject><subject>Metals</subject><subject>Nanoparticles</subject><subject>Pt/Mno Interface</subject><subject>RWGS</subject><subject>Water gas</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqF0ElPwzAQBWALgSgUrhyRJS5cUmyPEyfHiqUtYhOLOEaOM6ZBbQJ2UtR_j6uySFw4eWR98zR6hBxwNuCMiRNdVzgQTABXIGGD7PBY8AiUgs0wS4BIpTHvkV3vX4NPU5Zskx6knKtE8R1yedeeXNe3dFK36Kw2GKayM1jSM7RoWk9t4-i4epnSe1yg80ifdaB0pD19mFa2pUPTVouqXe6RLatnHve_3j55ujh_PB1HV7ejyenwKjJSCIisxURAwuNYScgUKtAstkXGQJqiTC03GktZ2JgXWayNUBYl6tUnZLYUBfTJ8Tr3zTXvHfo2n1fe4Gyma2w6n4uMyVgBJEmgR3_oa9O5OlwXlJBplsqUBzVYK-Ma7x3a_M1Vc-2WOWf5quV81XL-03JYOPyK7Yo5lj_8u9YAsjX4qGa4_CcuH95Mzn_DPwHGCofF</recordid><startdate>20240219</startdate><enddate>20240219</enddate><creator>Szenti, Imre</creator><creator>Efremova, Anastasiia</creator><creator>Kiss, János</creator><creator>Sápi, András</creator><creator>Óvári, László</creator><creator>Halasi, Gyula</creator><creator>Haselmann, Ulrich</creator><creator>Zhang, Zaoli</creator><creator>Morales‐Vidal, Jordi</creator><creator>Baán, Kornélia</creator><creator>Kukovecz, Ákos</creator><creator>López, Núria</creator><creator>Kónya, Zoltán</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6557-0731</orcidid></search><sort><creationdate>20240219</creationdate><title>Pt/MnO Interface Induced Defects for High Reverse Water Gas Shift Activity</title><author>Szenti, Imre ; Efremova, Anastasiia ; Kiss, János ; Sápi, András ; Óvári, László ; Halasi, Gyula ; Haselmann, Ulrich ; Zhang, Zaoli ; Morales‐Vidal, Jordi ; Baán, Kornélia ; Kukovecz, Ákos ; López, Núria ; Kónya, Zoltán</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4223-ffe623615574397e73a05fb9034cbd8f1caed4bf51b95ac27fe4eacaed39fd2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Catalysts</topic><topic>Crystal defects</topic><topic>Density functional theory</topic><topic>Edge Dislocations</topic><topic>Low CO Stability</topic><topic>Manganese Oxide</topic><topic>Manganese oxides</topic><topic>Metals</topic><topic>Nanoparticles</topic><topic>Pt/Mno Interface</topic><topic>RWGS</topic><topic>Water gas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szenti, Imre</creatorcontrib><creatorcontrib>Efremova, Anastasiia</creatorcontrib><creatorcontrib>Kiss, János</creatorcontrib><creatorcontrib>Sápi, András</creatorcontrib><creatorcontrib>Óvári, László</creatorcontrib><creatorcontrib>Halasi, Gyula</creatorcontrib><creatorcontrib>Haselmann, Ulrich</creatorcontrib><creatorcontrib>Zhang, Zaoli</creatorcontrib><creatorcontrib>Morales‐Vidal, Jordi</creatorcontrib><creatorcontrib>Baán, Kornélia</creatorcontrib><creatorcontrib>Kukovecz, Ákos</creatorcontrib><creatorcontrib>López, Núria</creatorcontrib><creatorcontrib>Kónya, Zoltán</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szenti, Imre</au><au>Efremova, Anastasiia</au><au>Kiss, János</au><au>Sápi, András</au><au>Óvári, László</au><au>Halasi, Gyula</au><au>Haselmann, Ulrich</au><au>Zhang, Zaoli</au><au>Morales‐Vidal, Jordi</au><au>Baán, Kornélia</au><au>Kukovecz, Ákos</au><au>López, Núria</au><au>Kónya, Zoltán</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pt/MnO Interface Induced Defects for High Reverse Water Gas Shift Activity</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2024-02-19</date><risdate>2024</risdate><volume>63</volume><issue>8</issue><spage>e202317343</spage><epage>n/a</epage><pages>e202317343-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>The implementation of supported metal catalysts heavily relies on the synergistic interactions between metal nanoparticles and the material they are dispersed on. It is clear that interfacial perimeter sites have outstanding skills for turning catalytic reactions over, however, high activity and selectivity of the designed interface‐induced metal distortion can also obtain catalysts for the most crucial industrial processes as evidenced in this paper. Herein, the beneficial synergy established between designed Pt nanoparticles and MnO in the course of the reverse water gas shift (RWGS) reaction resulted in a Pt/MnO catalyst having ≈10 times higher activity compared to the reference Pt/SBA‐15 catalyst with >99 % CO selectivity. Under activation, a crystal assembly through the metallic Pt (110) and MnO evolved, where the plane distance differences caused a mismatched‐row structure in softer Pt nanoparticles, which was identified by microscopic and surface‐sensitive spectroscopic characterizations combined with density functional theory simulations. The generated edge dislocations caused the Pt lattice expansion which led to the weakening of the Pt−CO bond. Even though MnO also exhibited an adverse effect on Pt by lowering the number of exposed metal sites, rapid desorption of the linearly adsorbed CO species governed the performance of the Pt/MnO in the RWGS.
As the result of edge dislocations generated at the Pt/MnO interface, linearly adsorbed CO is destabilized and released fast from the Pt nanoparticle. This leads to the enhanced catalytic performance of the Pt/MnO in the RWGS reaction.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38117671</pmid><doi>10.1002/anie.202317343</doi><tpages>7</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-6557-0731</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2024-02, Vol.63 (8), p.e202317343-n/a |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2904573366 |
source | Wiley Online Library |
subjects | Catalysts Crystal defects Density functional theory Edge Dislocations Low CO Stability Manganese Oxide Manganese oxides Metals Nanoparticles Pt/Mno Interface RWGS Water gas |
title | Pt/MnO Interface Induced Defects for High Reverse Water Gas Shift Activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T18%3A44%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pt/MnO%20Interface%20Induced%20Defects%20for%20High%20Reverse%20Water%20Gas%20Shift%20Activity&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Szenti,%20Imre&rft.date=2024-02-19&rft.volume=63&rft.issue=8&rft.spage=e202317343&rft.epage=n/a&rft.pages=e202317343-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202317343&rft_dat=%3Cproquest_cross%3E2924898481%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2924898481&rft_id=info:pmid/38117671&rfr_iscdi=true |