Modeling the Formation of Organic Compounds across Full Volatility Ranges and Their Contribution to Nanoparticle Growth in a Polluted Atmosphere

Nanoparticle growth influences atmospheric particles’ climatic effects, and it is largely driven by low-volatility organic vapors. However, the magnitude and mechanism of organics’ contribution to nanoparticle growth in polluted environments remain unclear because current observations and models can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2024-01, Vol.58 (2), p.1223-1235
Hauptverfasser: Li, Zeqi, Zhao, Bin, Yin, Dejia, Wang, Shuxiao, Qiao, Xiaohui, Jiang, Jingkun, Li, Yiran, Shen, Jiewen, He, Yicong, Chang, Xing, Li, Xiaoxiao, Liu, Yuliang, Li, Yuanyuan, Liu, Chong, Qi, Ximeng, Chen, Liangduo, Chi, Xuguang, Jiang, Yueqi, Li, Yuyang, Wu, Jin, Nie, Wei, Ding, Aijun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1235
container_issue 2
container_start_page 1223
container_title Environmental science & technology
container_volume 58
creator Li, Zeqi
Zhao, Bin
Yin, Dejia
Wang, Shuxiao
Qiao, Xiaohui
Jiang, Jingkun
Li, Yiran
Shen, Jiewen
He, Yicong
Chang, Xing
Li, Xiaoxiao
Liu, Yuliang
Li, Yuanyuan
Liu, Chong
Qi, Ximeng
Chen, Liangduo
Chi, Xuguang
Jiang, Yueqi
Li, Yuyang
Wu, Jin
Nie, Wei
Ding, Aijun
description Nanoparticle growth influences atmospheric particles’ climatic effects, and it is largely driven by low-volatility organic vapors. However, the magnitude and mechanism of organics’ contribution to nanoparticle growth in polluted environments remain unclear because current observations and models cannot capture organics across full volatility ranges or track their formation chemistry. Here, we develop a mechanistic model that characterizes the full volatility spectrum of organic vapors and their contributions to nanoparticle growth by coupling advanced organic oxidation modeling and kinetic gas-particle partitioning. The model is applied to Nanjing, a typical polluted city, and it effectively captures the volatility distribution of low-volatility organics (with saturation vapor concentrations
doi_str_mv 10.1021/acs.est.3c06708
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2904573144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2904573144</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-fe2afe7a96b9f15a4cd7dbc79626782a2c2c58bcf42faa3820f996266b83ac9a3</originalsourceid><addsrcrecordid>eNp1kU9v1DAQxS0EotvCmRuyxAWpytZ_kjg-Viu2IBWKUEHcoonj7Lpy7NR2hPot-Mg43aUHJE5zmN97M3oPoTeUrClh9AJUXOuY1lyRWpDmGVrRipGiair6HK0IobyQvP55gk5jvCOEME6al-iEN5QKyZsV-v3Z99oat8Npr_HWhxGS8Q77Ad-EHTij8MaPk59dHzGo4GPE29la_MPbTFqTHvA3cDudt67Ht3ttQla4FEw3Pzolj7-A8xOEZJTV-Cr4X2mPjcOAv3pr56R7fJlGH6e9DvoVejGAjfr1cZ6h79sPt5uPxfXN1afN5XUBnFapGDSDQQuQdScHWkGpetF3Ssia1aJhwBRTVdOpoWQDAG8YGeSyq7uGg5LAz9D7g-8U_P2cM2xHE5W2Fpz2c2yZJGUlOC3LjL77B73zc3D5u0xRURMhxUJdHKjHkIIe2imYEcJDS0m7lNXmstpFfSwrK94efedu1P0T_7edDJwfgEX5dPN_dn8AEleiSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917607974</pqid></control><display><type>article</type><title>Modeling the Formation of Organic Compounds across Full Volatility Ranges and Their Contribution to Nanoparticle Growth in a Polluted Atmosphere</title><source>MEDLINE</source><source>ACS Publications</source><creator>Li, Zeqi ; Zhao, Bin ; Yin, Dejia ; Wang, Shuxiao ; Qiao, Xiaohui ; Jiang, Jingkun ; Li, Yiran ; Shen, Jiewen ; He, Yicong ; Chang, Xing ; Li, Xiaoxiao ; Liu, Yuliang ; Li, Yuanyuan ; Liu, Chong ; Qi, Ximeng ; Chen, Liangduo ; Chi, Xuguang ; Jiang, Yueqi ; Li, Yuyang ; Wu, Jin ; Nie, Wei ; Ding, Aijun</creator><creatorcontrib>Li, Zeqi ; Zhao, Bin ; Yin, Dejia ; Wang, Shuxiao ; Qiao, Xiaohui ; Jiang, Jingkun ; Li, Yiran ; Shen, Jiewen ; He, Yicong ; Chang, Xing ; Li, Xiaoxiao ; Liu, Yuliang ; Li, Yuanyuan ; Liu, Chong ; Qi, Ximeng ; Chen, Liangduo ; Chi, Xuguang ; Jiang, Yueqi ; Li, Yuyang ; Wu, Jin ; Nie, Wei ; Ding, Aijun</creatorcontrib><description>Nanoparticle growth influences atmospheric particles’ climatic effects, and it is largely driven by low-volatility organic vapors. However, the magnitude and mechanism of organics’ contribution to nanoparticle growth in polluted environments remain unclear because current observations and models cannot capture organics across full volatility ranges or track their formation chemistry. Here, we develop a mechanistic model that characterizes the full volatility spectrum of organic vapors and their contributions to nanoparticle growth by coupling advanced organic oxidation modeling and kinetic gas-particle partitioning. The model is applied to Nanjing, a typical polluted city, and it effectively captures the volatility distribution of low-volatility organics (with saturation vapor concentrations &lt;0.3 μg/m3), thus accurately reproducing growth rates (GRs), with a 4.91% normalized mean bias. Simulations indicate that as particles grow from 4 to 40 nm, the relative fractions of GRs attributable to organics increase from 59 to 86%, with the remaining contribution from H2SO4 and its clusters. Aromatics contribute much to condensable organic vapors (∼37%), especially low-volatility vapors (∼61%), thus contributing the most to GRs (32–46%) as 4–40 nm particles grow. Alkanes also contribute 19–35% of GRs, while biogenic volatile organic compounds contribute minimally (&lt;13%). Our model helps assess the climatic impacts of particles and predict future changes.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.3c06708</identifier><identifier>PMID: 38117938</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aerosols ; Air pollution ; Alkanes ; Aromatic compounds ; Atmosphere - chemistry ; Atmospheric models ; Climate effects ; Gases ; Nanoparticles ; Occurrence, Fate, and Transport of Contaminants in Indoor Air and Atmosphere ; Organic compounds ; Oxidation ; Oxidation-Reduction ; Polluted environments ; Sulfuric acid ; Vapors ; VOCs ; Volatile Organic Compounds ; Volatility</subject><ispartof>Environmental science &amp; technology, 2024-01, Vol.58 (2), p.1223-1235</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Jan 16, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a315t-fe2afe7a96b9f15a4cd7dbc79626782a2c2c58bcf42faa3820f996266b83ac9a3</cites><orcidid>0000-0001-9727-1963 ; 0000-0002-6048-0515 ; 0000-0003-3210-9310 ; 0000-0002-7840-8239 ; 0000-0001-7900-3084 ; 0000-0002-7755-0751 ; 0000-0001-8438-9188 ; 0000-0001-6172-190X ; 0000-0003-4481-5386</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.3c06708$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.3c06708$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38117938$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Zeqi</creatorcontrib><creatorcontrib>Zhao, Bin</creatorcontrib><creatorcontrib>Yin, Dejia</creatorcontrib><creatorcontrib>Wang, Shuxiao</creatorcontrib><creatorcontrib>Qiao, Xiaohui</creatorcontrib><creatorcontrib>Jiang, Jingkun</creatorcontrib><creatorcontrib>Li, Yiran</creatorcontrib><creatorcontrib>Shen, Jiewen</creatorcontrib><creatorcontrib>He, Yicong</creatorcontrib><creatorcontrib>Chang, Xing</creatorcontrib><creatorcontrib>Li, Xiaoxiao</creatorcontrib><creatorcontrib>Liu, Yuliang</creatorcontrib><creatorcontrib>Li, Yuanyuan</creatorcontrib><creatorcontrib>Liu, Chong</creatorcontrib><creatorcontrib>Qi, Ximeng</creatorcontrib><creatorcontrib>Chen, Liangduo</creatorcontrib><creatorcontrib>Chi, Xuguang</creatorcontrib><creatorcontrib>Jiang, Yueqi</creatorcontrib><creatorcontrib>Li, Yuyang</creatorcontrib><creatorcontrib>Wu, Jin</creatorcontrib><creatorcontrib>Nie, Wei</creatorcontrib><creatorcontrib>Ding, Aijun</creatorcontrib><title>Modeling the Formation of Organic Compounds across Full Volatility Ranges and Their Contribution to Nanoparticle Growth in a Polluted Atmosphere</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Nanoparticle growth influences atmospheric particles’ climatic effects, and it is largely driven by low-volatility organic vapors. However, the magnitude and mechanism of organics’ contribution to nanoparticle growth in polluted environments remain unclear because current observations and models cannot capture organics across full volatility ranges or track their formation chemistry. Here, we develop a mechanistic model that characterizes the full volatility spectrum of organic vapors and their contributions to nanoparticle growth by coupling advanced organic oxidation modeling and kinetic gas-particle partitioning. The model is applied to Nanjing, a typical polluted city, and it effectively captures the volatility distribution of low-volatility organics (with saturation vapor concentrations &lt;0.3 μg/m3), thus accurately reproducing growth rates (GRs), with a 4.91% normalized mean bias. Simulations indicate that as particles grow from 4 to 40 nm, the relative fractions of GRs attributable to organics increase from 59 to 86%, with the remaining contribution from H2SO4 and its clusters. Aromatics contribute much to condensable organic vapors (∼37%), especially low-volatility vapors (∼61%), thus contributing the most to GRs (32–46%) as 4–40 nm particles grow. Alkanes also contribute 19–35% of GRs, while biogenic volatile organic compounds contribute minimally (&lt;13%). Our model helps assess the climatic impacts of particles and predict future changes.</description><subject>Aerosols</subject><subject>Air pollution</subject><subject>Alkanes</subject><subject>Aromatic compounds</subject><subject>Atmosphere - chemistry</subject><subject>Atmospheric models</subject><subject>Climate effects</subject><subject>Gases</subject><subject>Nanoparticles</subject><subject>Occurrence, Fate, and Transport of Contaminants in Indoor Air and Atmosphere</subject><subject>Organic compounds</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Polluted environments</subject><subject>Sulfuric acid</subject><subject>Vapors</subject><subject>VOCs</subject><subject>Volatile Organic Compounds</subject><subject>Volatility</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU9v1DAQxS0EotvCmRuyxAWpytZ_kjg-Viu2IBWKUEHcoonj7Lpy7NR2hPot-Mg43aUHJE5zmN97M3oPoTeUrClh9AJUXOuY1lyRWpDmGVrRipGiair6HK0IobyQvP55gk5jvCOEME6al-iEN5QKyZsV-v3Z99oat8Npr_HWhxGS8Q77Ad-EHTij8MaPk59dHzGo4GPE29la_MPbTFqTHvA3cDudt67Ht3ttQla4FEw3Pzolj7-A8xOEZJTV-Cr4X2mPjcOAv3pr56R7fJlGH6e9DvoVejGAjfr1cZ6h79sPt5uPxfXN1afN5XUBnFapGDSDQQuQdScHWkGpetF3Ssia1aJhwBRTVdOpoWQDAG8YGeSyq7uGg5LAz9D7g-8U_P2cM2xHE5W2Fpz2c2yZJGUlOC3LjL77B73zc3D5u0xRURMhxUJdHKjHkIIe2imYEcJDS0m7lNXmstpFfSwrK94efedu1P0T_7edDJwfgEX5dPN_dn8AEleiSw</recordid><startdate>20240116</startdate><enddate>20240116</enddate><creator>Li, Zeqi</creator><creator>Zhao, Bin</creator><creator>Yin, Dejia</creator><creator>Wang, Shuxiao</creator><creator>Qiao, Xiaohui</creator><creator>Jiang, Jingkun</creator><creator>Li, Yiran</creator><creator>Shen, Jiewen</creator><creator>He, Yicong</creator><creator>Chang, Xing</creator><creator>Li, Xiaoxiao</creator><creator>Liu, Yuliang</creator><creator>Li, Yuanyuan</creator><creator>Liu, Chong</creator><creator>Qi, Ximeng</creator><creator>Chen, Liangduo</creator><creator>Chi, Xuguang</creator><creator>Jiang, Yueqi</creator><creator>Li, Yuyang</creator><creator>Wu, Jin</creator><creator>Nie, Wei</creator><creator>Ding, Aijun</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9727-1963</orcidid><orcidid>https://orcid.org/0000-0002-6048-0515</orcidid><orcidid>https://orcid.org/0000-0003-3210-9310</orcidid><orcidid>https://orcid.org/0000-0002-7840-8239</orcidid><orcidid>https://orcid.org/0000-0001-7900-3084</orcidid><orcidid>https://orcid.org/0000-0002-7755-0751</orcidid><orcidid>https://orcid.org/0000-0001-8438-9188</orcidid><orcidid>https://orcid.org/0000-0001-6172-190X</orcidid><orcidid>https://orcid.org/0000-0003-4481-5386</orcidid></search><sort><creationdate>20240116</creationdate><title>Modeling the Formation of Organic Compounds across Full Volatility Ranges and Their Contribution to Nanoparticle Growth in a Polluted Atmosphere</title><author>Li, Zeqi ; Zhao, Bin ; Yin, Dejia ; Wang, Shuxiao ; Qiao, Xiaohui ; Jiang, Jingkun ; Li, Yiran ; Shen, Jiewen ; He, Yicong ; Chang, Xing ; Li, Xiaoxiao ; Liu, Yuliang ; Li, Yuanyuan ; Liu, Chong ; Qi, Ximeng ; Chen, Liangduo ; Chi, Xuguang ; Jiang, Yueqi ; Li, Yuyang ; Wu, Jin ; Nie, Wei ; Ding, Aijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-fe2afe7a96b9f15a4cd7dbc79626782a2c2c58bcf42faa3820f996266b83ac9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerosols</topic><topic>Air pollution</topic><topic>Alkanes</topic><topic>Aromatic compounds</topic><topic>Atmosphere - chemistry</topic><topic>Atmospheric models</topic><topic>Climate effects</topic><topic>Gases</topic><topic>Nanoparticles</topic><topic>Occurrence, Fate, and Transport of Contaminants in Indoor Air and Atmosphere</topic><topic>Organic compounds</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Polluted environments</topic><topic>Sulfuric acid</topic><topic>Vapors</topic><topic>VOCs</topic><topic>Volatile Organic Compounds</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zeqi</creatorcontrib><creatorcontrib>Zhao, Bin</creatorcontrib><creatorcontrib>Yin, Dejia</creatorcontrib><creatorcontrib>Wang, Shuxiao</creatorcontrib><creatorcontrib>Qiao, Xiaohui</creatorcontrib><creatorcontrib>Jiang, Jingkun</creatorcontrib><creatorcontrib>Li, Yiran</creatorcontrib><creatorcontrib>Shen, Jiewen</creatorcontrib><creatorcontrib>He, Yicong</creatorcontrib><creatorcontrib>Chang, Xing</creatorcontrib><creatorcontrib>Li, Xiaoxiao</creatorcontrib><creatorcontrib>Liu, Yuliang</creatorcontrib><creatorcontrib>Li, Yuanyuan</creatorcontrib><creatorcontrib>Liu, Chong</creatorcontrib><creatorcontrib>Qi, Ximeng</creatorcontrib><creatorcontrib>Chen, Liangduo</creatorcontrib><creatorcontrib>Chi, Xuguang</creatorcontrib><creatorcontrib>Jiang, Yueqi</creatorcontrib><creatorcontrib>Li, Yuyang</creatorcontrib><creatorcontrib>Wu, Jin</creatorcontrib><creatorcontrib>Nie, Wei</creatorcontrib><creatorcontrib>Ding, Aijun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zeqi</au><au>Zhao, Bin</au><au>Yin, Dejia</au><au>Wang, Shuxiao</au><au>Qiao, Xiaohui</au><au>Jiang, Jingkun</au><au>Li, Yiran</au><au>Shen, Jiewen</au><au>He, Yicong</au><au>Chang, Xing</au><au>Li, Xiaoxiao</au><au>Liu, Yuliang</au><au>Li, Yuanyuan</au><au>Liu, Chong</au><au>Qi, Ximeng</au><au>Chen, Liangduo</au><au>Chi, Xuguang</au><au>Jiang, Yueqi</au><au>Li, Yuyang</au><au>Wu, Jin</au><au>Nie, Wei</au><au>Ding, Aijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the Formation of Organic Compounds across Full Volatility Ranges and Their Contribution to Nanoparticle Growth in a Polluted Atmosphere</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2024-01-16</date><risdate>2024</risdate><volume>58</volume><issue>2</issue><spage>1223</spage><epage>1235</epage><pages>1223-1235</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Nanoparticle growth influences atmospheric particles’ climatic effects, and it is largely driven by low-volatility organic vapors. However, the magnitude and mechanism of organics’ contribution to nanoparticle growth in polluted environments remain unclear because current observations and models cannot capture organics across full volatility ranges or track their formation chemistry. Here, we develop a mechanistic model that characterizes the full volatility spectrum of organic vapors and their contributions to nanoparticle growth by coupling advanced organic oxidation modeling and kinetic gas-particle partitioning. The model is applied to Nanjing, a typical polluted city, and it effectively captures the volatility distribution of low-volatility organics (with saturation vapor concentrations &lt;0.3 μg/m3), thus accurately reproducing growth rates (GRs), with a 4.91% normalized mean bias. Simulations indicate that as particles grow from 4 to 40 nm, the relative fractions of GRs attributable to organics increase from 59 to 86%, with the remaining contribution from H2SO4 and its clusters. Aromatics contribute much to condensable organic vapors (∼37%), especially low-volatility vapors (∼61%), thus contributing the most to GRs (32–46%) as 4–40 nm particles grow. Alkanes also contribute 19–35% of GRs, while biogenic volatile organic compounds contribute minimally (&lt;13%). Our model helps assess the climatic impacts of particles and predict future changes.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38117938</pmid><doi>10.1021/acs.est.3c06708</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9727-1963</orcidid><orcidid>https://orcid.org/0000-0002-6048-0515</orcidid><orcidid>https://orcid.org/0000-0003-3210-9310</orcidid><orcidid>https://orcid.org/0000-0002-7840-8239</orcidid><orcidid>https://orcid.org/0000-0001-7900-3084</orcidid><orcidid>https://orcid.org/0000-0002-7755-0751</orcidid><orcidid>https://orcid.org/0000-0001-8438-9188</orcidid><orcidid>https://orcid.org/0000-0001-6172-190X</orcidid><orcidid>https://orcid.org/0000-0003-4481-5386</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2024-01, Vol.58 (2), p.1223-1235
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_2904573144
source MEDLINE; ACS Publications
subjects Aerosols
Air pollution
Alkanes
Aromatic compounds
Atmosphere - chemistry
Atmospheric models
Climate effects
Gases
Nanoparticles
Occurrence, Fate, and Transport of Contaminants in Indoor Air and Atmosphere
Organic compounds
Oxidation
Oxidation-Reduction
Polluted environments
Sulfuric acid
Vapors
VOCs
Volatile Organic Compounds
Volatility
title Modeling the Formation of Organic Compounds across Full Volatility Ranges and Their Contribution to Nanoparticle Growth in a Polluted Atmosphere
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T06%3A18%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20Formation%20of%20Organic%20Compounds%20across%20Full%20Volatility%20Ranges%20and%20Their%20Contribution%20to%20Nanoparticle%20Growth%20in%20a%20Polluted%20Atmosphere&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Li,%20Zeqi&rft.date=2024-01-16&rft.volume=58&rft.issue=2&rft.spage=1223&rft.epage=1235&rft.pages=1223-1235&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.3c06708&rft_dat=%3Cproquest_cross%3E2904573144%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917607974&rft_id=info:pmid/38117938&rfr_iscdi=true