Modeling the Formation of Organic Compounds across Full Volatility Ranges and Their Contribution to Nanoparticle Growth in a Polluted Atmosphere
Nanoparticle growth influences atmospheric particles’ climatic effects, and it is largely driven by low-volatility organic vapors. However, the magnitude and mechanism of organics’ contribution to nanoparticle growth in polluted environments remain unclear because current observations and models can...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2024-01, Vol.58 (2), p.1223-1235 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1235 |
---|---|
container_issue | 2 |
container_start_page | 1223 |
container_title | Environmental science & technology |
container_volume | 58 |
creator | Li, Zeqi Zhao, Bin Yin, Dejia Wang, Shuxiao Qiao, Xiaohui Jiang, Jingkun Li, Yiran Shen, Jiewen He, Yicong Chang, Xing Li, Xiaoxiao Liu, Yuliang Li, Yuanyuan Liu, Chong Qi, Ximeng Chen, Liangduo Chi, Xuguang Jiang, Yueqi Li, Yuyang Wu, Jin Nie, Wei Ding, Aijun |
description | Nanoparticle growth influences atmospheric particles’ climatic effects, and it is largely driven by low-volatility organic vapors. However, the magnitude and mechanism of organics’ contribution to nanoparticle growth in polluted environments remain unclear because current observations and models cannot capture organics across full volatility ranges or track their formation chemistry. Here, we develop a mechanistic model that characterizes the full volatility spectrum of organic vapors and their contributions to nanoparticle growth by coupling advanced organic oxidation modeling and kinetic gas-particle partitioning. The model is applied to Nanjing, a typical polluted city, and it effectively captures the volatility distribution of low-volatility organics (with saturation vapor concentrations |
doi_str_mv | 10.1021/acs.est.3c06708 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2904573144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2904573144</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-fe2afe7a96b9f15a4cd7dbc79626782a2c2c58bcf42faa3820f996266b83ac9a3</originalsourceid><addsrcrecordid>eNp1kU9v1DAQxS0EotvCmRuyxAWpytZ_kjg-Viu2IBWKUEHcoonj7Lpy7NR2hPot-Mg43aUHJE5zmN97M3oPoTeUrClh9AJUXOuY1lyRWpDmGVrRipGiair6HK0IobyQvP55gk5jvCOEME6al-iEN5QKyZsV-v3Z99oat8Npr_HWhxGS8Q77Ad-EHTij8MaPk59dHzGo4GPE29la_MPbTFqTHvA3cDudt67Ht3ttQla4FEw3Pzolj7-A8xOEZJTV-Cr4X2mPjcOAv3pr56R7fJlGH6e9DvoVejGAjfr1cZ6h79sPt5uPxfXN1afN5XUBnFapGDSDQQuQdScHWkGpetF3Ssia1aJhwBRTVdOpoWQDAG8YGeSyq7uGg5LAz9D7g-8U_P2cM2xHE5W2Fpz2c2yZJGUlOC3LjL77B73zc3D5u0xRURMhxUJdHKjHkIIe2imYEcJDS0m7lNXmstpFfSwrK94efedu1P0T_7edDJwfgEX5dPN_dn8AEleiSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917607974</pqid></control><display><type>article</type><title>Modeling the Formation of Organic Compounds across Full Volatility Ranges and Their Contribution to Nanoparticle Growth in a Polluted Atmosphere</title><source>MEDLINE</source><source>ACS Publications</source><creator>Li, Zeqi ; Zhao, Bin ; Yin, Dejia ; Wang, Shuxiao ; Qiao, Xiaohui ; Jiang, Jingkun ; Li, Yiran ; Shen, Jiewen ; He, Yicong ; Chang, Xing ; Li, Xiaoxiao ; Liu, Yuliang ; Li, Yuanyuan ; Liu, Chong ; Qi, Ximeng ; Chen, Liangduo ; Chi, Xuguang ; Jiang, Yueqi ; Li, Yuyang ; Wu, Jin ; Nie, Wei ; Ding, Aijun</creator><creatorcontrib>Li, Zeqi ; Zhao, Bin ; Yin, Dejia ; Wang, Shuxiao ; Qiao, Xiaohui ; Jiang, Jingkun ; Li, Yiran ; Shen, Jiewen ; He, Yicong ; Chang, Xing ; Li, Xiaoxiao ; Liu, Yuliang ; Li, Yuanyuan ; Liu, Chong ; Qi, Ximeng ; Chen, Liangduo ; Chi, Xuguang ; Jiang, Yueqi ; Li, Yuyang ; Wu, Jin ; Nie, Wei ; Ding, Aijun</creatorcontrib><description>Nanoparticle growth influences atmospheric particles’ climatic effects, and it is largely driven by low-volatility organic vapors. However, the magnitude and mechanism of organics’ contribution to nanoparticle growth in polluted environments remain unclear because current observations and models cannot capture organics across full volatility ranges or track their formation chemistry. Here, we develop a mechanistic model that characterizes the full volatility spectrum of organic vapors and their contributions to nanoparticle growth by coupling advanced organic oxidation modeling and kinetic gas-particle partitioning. The model is applied to Nanjing, a typical polluted city, and it effectively captures the volatility distribution of low-volatility organics (with saturation vapor concentrations <0.3 μg/m3), thus accurately reproducing growth rates (GRs), with a 4.91% normalized mean bias. Simulations indicate that as particles grow from 4 to 40 nm, the relative fractions of GRs attributable to organics increase from 59 to 86%, with the remaining contribution from H2SO4 and its clusters. Aromatics contribute much to condensable organic vapors (∼37%), especially low-volatility vapors (∼61%), thus contributing the most to GRs (32–46%) as 4–40 nm particles grow. Alkanes also contribute 19–35% of GRs, while biogenic volatile organic compounds contribute minimally (<13%). Our model helps assess the climatic impacts of particles and predict future changes.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.3c06708</identifier><identifier>PMID: 38117938</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aerosols ; Air pollution ; Alkanes ; Aromatic compounds ; Atmosphere - chemistry ; Atmospheric models ; Climate effects ; Gases ; Nanoparticles ; Occurrence, Fate, and Transport of Contaminants in Indoor Air and Atmosphere ; Organic compounds ; Oxidation ; Oxidation-Reduction ; Polluted environments ; Sulfuric acid ; Vapors ; VOCs ; Volatile Organic Compounds ; Volatility</subject><ispartof>Environmental science & technology, 2024-01, Vol.58 (2), p.1223-1235</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Jan 16, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a315t-fe2afe7a96b9f15a4cd7dbc79626782a2c2c58bcf42faa3820f996266b83ac9a3</cites><orcidid>0000-0001-9727-1963 ; 0000-0002-6048-0515 ; 0000-0003-3210-9310 ; 0000-0002-7840-8239 ; 0000-0001-7900-3084 ; 0000-0002-7755-0751 ; 0000-0001-8438-9188 ; 0000-0001-6172-190X ; 0000-0003-4481-5386</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.3c06708$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.3c06708$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38117938$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Zeqi</creatorcontrib><creatorcontrib>Zhao, Bin</creatorcontrib><creatorcontrib>Yin, Dejia</creatorcontrib><creatorcontrib>Wang, Shuxiao</creatorcontrib><creatorcontrib>Qiao, Xiaohui</creatorcontrib><creatorcontrib>Jiang, Jingkun</creatorcontrib><creatorcontrib>Li, Yiran</creatorcontrib><creatorcontrib>Shen, Jiewen</creatorcontrib><creatorcontrib>He, Yicong</creatorcontrib><creatorcontrib>Chang, Xing</creatorcontrib><creatorcontrib>Li, Xiaoxiao</creatorcontrib><creatorcontrib>Liu, Yuliang</creatorcontrib><creatorcontrib>Li, Yuanyuan</creatorcontrib><creatorcontrib>Liu, Chong</creatorcontrib><creatorcontrib>Qi, Ximeng</creatorcontrib><creatorcontrib>Chen, Liangduo</creatorcontrib><creatorcontrib>Chi, Xuguang</creatorcontrib><creatorcontrib>Jiang, Yueqi</creatorcontrib><creatorcontrib>Li, Yuyang</creatorcontrib><creatorcontrib>Wu, Jin</creatorcontrib><creatorcontrib>Nie, Wei</creatorcontrib><creatorcontrib>Ding, Aijun</creatorcontrib><title>Modeling the Formation of Organic Compounds across Full Volatility Ranges and Their Contribution to Nanoparticle Growth in a Polluted Atmosphere</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Nanoparticle growth influences atmospheric particles’ climatic effects, and it is largely driven by low-volatility organic vapors. However, the magnitude and mechanism of organics’ contribution to nanoparticle growth in polluted environments remain unclear because current observations and models cannot capture organics across full volatility ranges or track their formation chemistry. Here, we develop a mechanistic model that characterizes the full volatility spectrum of organic vapors and their contributions to nanoparticle growth by coupling advanced organic oxidation modeling and kinetic gas-particle partitioning. The model is applied to Nanjing, a typical polluted city, and it effectively captures the volatility distribution of low-volatility organics (with saturation vapor concentrations <0.3 μg/m3), thus accurately reproducing growth rates (GRs), with a 4.91% normalized mean bias. Simulations indicate that as particles grow from 4 to 40 nm, the relative fractions of GRs attributable to organics increase from 59 to 86%, with the remaining contribution from H2SO4 and its clusters. Aromatics contribute much to condensable organic vapors (∼37%), especially low-volatility vapors (∼61%), thus contributing the most to GRs (32–46%) as 4–40 nm particles grow. Alkanes also contribute 19–35% of GRs, while biogenic volatile organic compounds contribute minimally (<13%). Our model helps assess the climatic impacts of particles and predict future changes.</description><subject>Aerosols</subject><subject>Air pollution</subject><subject>Alkanes</subject><subject>Aromatic compounds</subject><subject>Atmosphere - chemistry</subject><subject>Atmospheric models</subject><subject>Climate effects</subject><subject>Gases</subject><subject>Nanoparticles</subject><subject>Occurrence, Fate, and Transport of Contaminants in Indoor Air and Atmosphere</subject><subject>Organic compounds</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Polluted environments</subject><subject>Sulfuric acid</subject><subject>Vapors</subject><subject>VOCs</subject><subject>Volatile Organic Compounds</subject><subject>Volatility</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU9v1DAQxS0EotvCmRuyxAWpytZ_kjg-Viu2IBWKUEHcoonj7Lpy7NR2hPot-Mg43aUHJE5zmN97M3oPoTeUrClh9AJUXOuY1lyRWpDmGVrRipGiair6HK0IobyQvP55gk5jvCOEME6al-iEN5QKyZsV-v3Z99oat8Npr_HWhxGS8Q77Ad-EHTij8MaPk59dHzGo4GPE29la_MPbTFqTHvA3cDudt67Ht3ttQla4FEw3Pzolj7-A8xOEZJTV-Cr4X2mPjcOAv3pr56R7fJlGH6e9DvoVejGAjfr1cZ6h79sPt5uPxfXN1afN5XUBnFapGDSDQQuQdScHWkGpetF3Ssia1aJhwBRTVdOpoWQDAG8YGeSyq7uGg5LAz9D7g-8U_P2cM2xHE5W2Fpz2c2yZJGUlOC3LjL77B73zc3D5u0xRURMhxUJdHKjHkIIe2imYEcJDS0m7lNXmstpFfSwrK94efedu1P0T_7edDJwfgEX5dPN_dn8AEleiSw</recordid><startdate>20240116</startdate><enddate>20240116</enddate><creator>Li, Zeqi</creator><creator>Zhao, Bin</creator><creator>Yin, Dejia</creator><creator>Wang, Shuxiao</creator><creator>Qiao, Xiaohui</creator><creator>Jiang, Jingkun</creator><creator>Li, Yiran</creator><creator>Shen, Jiewen</creator><creator>He, Yicong</creator><creator>Chang, Xing</creator><creator>Li, Xiaoxiao</creator><creator>Liu, Yuliang</creator><creator>Li, Yuanyuan</creator><creator>Liu, Chong</creator><creator>Qi, Ximeng</creator><creator>Chen, Liangduo</creator><creator>Chi, Xuguang</creator><creator>Jiang, Yueqi</creator><creator>Li, Yuyang</creator><creator>Wu, Jin</creator><creator>Nie, Wei</creator><creator>Ding, Aijun</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9727-1963</orcidid><orcidid>https://orcid.org/0000-0002-6048-0515</orcidid><orcidid>https://orcid.org/0000-0003-3210-9310</orcidid><orcidid>https://orcid.org/0000-0002-7840-8239</orcidid><orcidid>https://orcid.org/0000-0001-7900-3084</orcidid><orcidid>https://orcid.org/0000-0002-7755-0751</orcidid><orcidid>https://orcid.org/0000-0001-8438-9188</orcidid><orcidid>https://orcid.org/0000-0001-6172-190X</orcidid><orcidid>https://orcid.org/0000-0003-4481-5386</orcidid></search><sort><creationdate>20240116</creationdate><title>Modeling the Formation of Organic Compounds across Full Volatility Ranges and Their Contribution to Nanoparticle Growth in a Polluted Atmosphere</title><author>Li, Zeqi ; Zhao, Bin ; Yin, Dejia ; Wang, Shuxiao ; Qiao, Xiaohui ; Jiang, Jingkun ; Li, Yiran ; Shen, Jiewen ; He, Yicong ; Chang, Xing ; Li, Xiaoxiao ; Liu, Yuliang ; Li, Yuanyuan ; Liu, Chong ; Qi, Ximeng ; Chen, Liangduo ; Chi, Xuguang ; Jiang, Yueqi ; Li, Yuyang ; Wu, Jin ; Nie, Wei ; Ding, Aijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-fe2afe7a96b9f15a4cd7dbc79626782a2c2c58bcf42faa3820f996266b83ac9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerosols</topic><topic>Air pollution</topic><topic>Alkanes</topic><topic>Aromatic compounds</topic><topic>Atmosphere - chemistry</topic><topic>Atmospheric models</topic><topic>Climate effects</topic><topic>Gases</topic><topic>Nanoparticles</topic><topic>Occurrence, Fate, and Transport of Contaminants in Indoor Air and Atmosphere</topic><topic>Organic compounds</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Polluted environments</topic><topic>Sulfuric acid</topic><topic>Vapors</topic><topic>VOCs</topic><topic>Volatile Organic Compounds</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zeqi</creatorcontrib><creatorcontrib>Zhao, Bin</creatorcontrib><creatorcontrib>Yin, Dejia</creatorcontrib><creatorcontrib>Wang, Shuxiao</creatorcontrib><creatorcontrib>Qiao, Xiaohui</creatorcontrib><creatorcontrib>Jiang, Jingkun</creatorcontrib><creatorcontrib>Li, Yiran</creatorcontrib><creatorcontrib>Shen, Jiewen</creatorcontrib><creatorcontrib>He, Yicong</creatorcontrib><creatorcontrib>Chang, Xing</creatorcontrib><creatorcontrib>Li, Xiaoxiao</creatorcontrib><creatorcontrib>Liu, Yuliang</creatorcontrib><creatorcontrib>Li, Yuanyuan</creatorcontrib><creatorcontrib>Liu, Chong</creatorcontrib><creatorcontrib>Qi, Ximeng</creatorcontrib><creatorcontrib>Chen, Liangduo</creatorcontrib><creatorcontrib>Chi, Xuguang</creatorcontrib><creatorcontrib>Jiang, Yueqi</creatorcontrib><creatorcontrib>Li, Yuyang</creatorcontrib><creatorcontrib>Wu, Jin</creatorcontrib><creatorcontrib>Nie, Wei</creatorcontrib><creatorcontrib>Ding, Aijun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zeqi</au><au>Zhao, Bin</au><au>Yin, Dejia</au><au>Wang, Shuxiao</au><au>Qiao, Xiaohui</au><au>Jiang, Jingkun</au><au>Li, Yiran</au><au>Shen, Jiewen</au><au>He, Yicong</au><au>Chang, Xing</au><au>Li, Xiaoxiao</au><au>Liu, Yuliang</au><au>Li, Yuanyuan</au><au>Liu, Chong</au><au>Qi, Ximeng</au><au>Chen, Liangduo</au><au>Chi, Xuguang</au><au>Jiang, Yueqi</au><au>Li, Yuyang</au><au>Wu, Jin</au><au>Nie, Wei</au><au>Ding, Aijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the Formation of Organic Compounds across Full Volatility Ranges and Their Contribution to Nanoparticle Growth in a Polluted Atmosphere</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2024-01-16</date><risdate>2024</risdate><volume>58</volume><issue>2</issue><spage>1223</spage><epage>1235</epage><pages>1223-1235</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Nanoparticle growth influences atmospheric particles’ climatic effects, and it is largely driven by low-volatility organic vapors. However, the magnitude and mechanism of organics’ contribution to nanoparticle growth in polluted environments remain unclear because current observations and models cannot capture organics across full volatility ranges or track their formation chemistry. Here, we develop a mechanistic model that characterizes the full volatility spectrum of organic vapors and their contributions to nanoparticle growth by coupling advanced organic oxidation modeling and kinetic gas-particle partitioning. The model is applied to Nanjing, a typical polluted city, and it effectively captures the volatility distribution of low-volatility organics (with saturation vapor concentrations <0.3 μg/m3), thus accurately reproducing growth rates (GRs), with a 4.91% normalized mean bias. Simulations indicate that as particles grow from 4 to 40 nm, the relative fractions of GRs attributable to organics increase from 59 to 86%, with the remaining contribution from H2SO4 and its clusters. Aromatics contribute much to condensable organic vapors (∼37%), especially low-volatility vapors (∼61%), thus contributing the most to GRs (32–46%) as 4–40 nm particles grow. Alkanes also contribute 19–35% of GRs, while biogenic volatile organic compounds contribute minimally (<13%). Our model helps assess the climatic impacts of particles and predict future changes.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38117938</pmid><doi>10.1021/acs.est.3c06708</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9727-1963</orcidid><orcidid>https://orcid.org/0000-0002-6048-0515</orcidid><orcidid>https://orcid.org/0000-0003-3210-9310</orcidid><orcidid>https://orcid.org/0000-0002-7840-8239</orcidid><orcidid>https://orcid.org/0000-0001-7900-3084</orcidid><orcidid>https://orcid.org/0000-0002-7755-0751</orcidid><orcidid>https://orcid.org/0000-0001-8438-9188</orcidid><orcidid>https://orcid.org/0000-0001-6172-190X</orcidid><orcidid>https://orcid.org/0000-0003-4481-5386</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2024-01, Vol.58 (2), p.1223-1235 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_2904573144 |
source | MEDLINE; ACS Publications |
subjects | Aerosols Air pollution Alkanes Aromatic compounds Atmosphere - chemistry Atmospheric models Climate effects Gases Nanoparticles Occurrence, Fate, and Transport of Contaminants in Indoor Air and Atmosphere Organic compounds Oxidation Oxidation-Reduction Polluted environments Sulfuric acid Vapors VOCs Volatile Organic Compounds Volatility |
title | Modeling the Formation of Organic Compounds across Full Volatility Ranges and Their Contribution to Nanoparticle Growth in a Polluted Atmosphere |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T06%3A18%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20Formation%20of%20Organic%20Compounds%20across%20Full%20Volatility%20Ranges%20and%20Their%20Contribution%20to%20Nanoparticle%20Growth%20in%20a%20Polluted%20Atmosphere&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Li,%20Zeqi&rft.date=2024-01-16&rft.volume=58&rft.issue=2&rft.spage=1223&rft.epage=1235&rft.pages=1223-1235&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.3c06708&rft_dat=%3Cproquest_cross%3E2904573144%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917607974&rft_id=info:pmid/38117938&rfr_iscdi=true |