Preanchoring Enabled Directional Modification of Atomically Thin Membrane for High-Performance Osmotic Energy Generation

Salinity gradient energy is an environmentally friendly energy source that possesses potential to meet the growing global energy demand. Although covalently modified nanoporous graphene membranes are prospective candidates to break the trade-off between ion selectivity and permeability, the random r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2024-01, Vol.24 (1), p.26-34
Hauptverfasser: Liu, Yuancheng, Zhang, Shengping, Song, Ruiyang, Zeng, Haiou, Wang, Luda
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34
container_issue 1
container_start_page 26
container_title Nano letters
container_volume 24
creator Liu, Yuancheng
Zhang, Shengping
Song, Ruiyang
Zeng, Haiou
Wang, Luda
description Salinity gradient energy is an environmentally friendly energy source that possesses potential to meet the growing global energy demand. Although covalently modified nanoporous graphene membranes are prospective candidates to break the trade-off between ion selectivity and permeability, the random reaction sites and inevitable defects during modification reduce the reaction efficiency and energy conversion performance. Here, we developed a preanchoring method to achieve directional modification near the graphene nanopores periphery. Numerical simulation revealed that the improved surface charge density around nanopores results in exceptional K+/Cl– selectivity and osmotic energy conversion performance, which agreed well with experimental results. Ionic transport measurements showed that the directionally modified graphene membranes achieved an outstanding power density of 81.6 W m–2 with an energy conversion efficiency of 35.4% under a 100-fold salinity gradient, outperforming state-of-the-art graphene-based nanoporous membranes. This work provided a facile approach for precise modification of nanoporous graphene membranes and opened up new ways for osmotic power harvesting.
doi_str_mv 10.1021/acs.nanolett.3c03041
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2904573018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2904573018</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-b6eba436a7de6a47b37982f4fbf2a569859d297f112440b6655a7d01cc9162d93</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EolD4A4S8ZJPiVx5eVlBaJCpYwDpynHHrKomLnUj073FpYclqZqR778wchG4omVDC6L3SYdKpzjXQ9xOuCSeCnqALmnKSZFKy07--ECN0GcKGECJ5Ss7RiBeU5jmhF-jrzYPq9Np5263wrFNVAzV-tB50b12nGrx0tTVWq_2IncHT3rVxbJodfl_bDi-hrbzqABvn8cKu1skb-Ni3MRbwa2hdb3VMBr_a4TnE-hN1hc6MagJcH-sYfTzN3h8Wycvr_Plh-pIoLoo-qTKolOCZymvIlMgrnsuCGWEqw1Qaf0tlzWRuKGVCkCrL0jRKCdVa0ozVko_R3SF3693nAKEvWxs0NE082Q2hZJKINOeEFlEqDlLtXQgeTLn1tlV-V1JS7pmXkXn5y7w8Mo-22-OGoWqh_jP9Qo4CchDs7Rs3-Ig1_J_5Dc_mko0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904573018</pqid></control><display><type>article</type><title>Preanchoring Enabled Directional Modification of Atomically Thin Membrane for High-Performance Osmotic Energy Generation</title><source>ACS Publications</source><creator>Liu, Yuancheng ; Zhang, Shengping ; Song, Ruiyang ; Zeng, Haiou ; Wang, Luda</creator><creatorcontrib>Liu, Yuancheng ; Zhang, Shengping ; Song, Ruiyang ; Zeng, Haiou ; Wang, Luda</creatorcontrib><description>Salinity gradient energy is an environmentally friendly energy source that possesses potential to meet the growing global energy demand. Although covalently modified nanoporous graphene membranes are prospective candidates to break the trade-off between ion selectivity and permeability, the random reaction sites and inevitable defects during modification reduce the reaction efficiency and energy conversion performance. Here, we developed a preanchoring method to achieve directional modification near the graphene nanopores periphery. Numerical simulation revealed that the improved surface charge density around nanopores results in exceptional K+/Cl– selectivity and osmotic energy conversion performance, which agreed well with experimental results. Ionic transport measurements showed that the directionally modified graphene membranes achieved an outstanding power density of 81.6 W m–2 with an energy conversion efficiency of 35.4% under a 100-fold salinity gradient, outperforming state-of-the-art graphene-based nanoporous membranes. This work provided a facile approach for precise modification of nanoporous graphene membranes and opened up new ways for osmotic power harvesting.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.3c03041</identifier><identifier>PMID: 38117701</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Nano letters, 2024-01, Vol.24 (1), p.26-34</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-b6eba436a7de6a47b37982f4fbf2a569859d297f112440b6655a7d01cc9162d93</citedby><cites>FETCH-LOGICAL-a348t-b6eba436a7de6a47b37982f4fbf2a569859d297f112440b6655a7d01cc9162d93</cites><orcidid>0000-0002-4175-6870 ; 0000-0001-6222-7807</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.3c03041$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.3c03041$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38117701$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yuancheng</creatorcontrib><creatorcontrib>Zhang, Shengping</creatorcontrib><creatorcontrib>Song, Ruiyang</creatorcontrib><creatorcontrib>Zeng, Haiou</creatorcontrib><creatorcontrib>Wang, Luda</creatorcontrib><title>Preanchoring Enabled Directional Modification of Atomically Thin Membrane for High-Performance Osmotic Energy Generation</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Salinity gradient energy is an environmentally friendly energy source that possesses potential to meet the growing global energy demand. Although covalently modified nanoporous graphene membranes are prospective candidates to break the trade-off between ion selectivity and permeability, the random reaction sites and inevitable defects during modification reduce the reaction efficiency and energy conversion performance. Here, we developed a preanchoring method to achieve directional modification near the graphene nanopores periphery. Numerical simulation revealed that the improved surface charge density around nanopores results in exceptional K+/Cl– selectivity and osmotic energy conversion performance, which agreed well with experimental results. Ionic transport measurements showed that the directionally modified graphene membranes achieved an outstanding power density of 81.6 W m–2 with an energy conversion efficiency of 35.4% under a 100-fold salinity gradient, outperforming state-of-the-art graphene-based nanoporous membranes. This work provided a facile approach for precise modification of nanoporous graphene membranes and opened up new ways for osmotic power harvesting.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EolD4A4S8ZJPiVx5eVlBaJCpYwDpynHHrKomLnUj073FpYclqZqR778wchG4omVDC6L3SYdKpzjXQ9xOuCSeCnqALmnKSZFKy07--ECN0GcKGECJ5Ss7RiBeU5jmhF-jrzYPq9Np5263wrFNVAzV-tB50b12nGrx0tTVWq_2IncHT3rVxbJodfl_bDi-hrbzqABvn8cKu1skb-Ni3MRbwa2hdb3VMBr_a4TnE-hN1hc6MagJcH-sYfTzN3h8Wycvr_Plh-pIoLoo-qTKolOCZymvIlMgrnsuCGWEqw1Qaf0tlzWRuKGVCkCrL0jRKCdVa0ozVko_R3SF3693nAKEvWxs0NE082Q2hZJKINOeEFlEqDlLtXQgeTLn1tlV-V1JS7pmXkXn5y7w8Mo-22-OGoWqh_jP9Qo4CchDs7Rs3-Ig1_J_5Dc_mko0</recordid><startdate>20240110</startdate><enddate>20240110</enddate><creator>Liu, Yuancheng</creator><creator>Zhang, Shengping</creator><creator>Song, Ruiyang</creator><creator>Zeng, Haiou</creator><creator>Wang, Luda</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4175-6870</orcidid><orcidid>https://orcid.org/0000-0001-6222-7807</orcidid></search><sort><creationdate>20240110</creationdate><title>Preanchoring Enabled Directional Modification of Atomically Thin Membrane for High-Performance Osmotic Energy Generation</title><author>Liu, Yuancheng ; Zhang, Shengping ; Song, Ruiyang ; Zeng, Haiou ; Wang, Luda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-b6eba436a7de6a47b37982f4fbf2a569859d297f112440b6655a7d01cc9162d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yuancheng</creatorcontrib><creatorcontrib>Zhang, Shengping</creatorcontrib><creatorcontrib>Song, Ruiyang</creatorcontrib><creatorcontrib>Zeng, Haiou</creatorcontrib><creatorcontrib>Wang, Luda</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yuancheng</au><au>Zhang, Shengping</au><au>Song, Ruiyang</au><au>Zeng, Haiou</au><au>Wang, Luda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preanchoring Enabled Directional Modification of Atomically Thin Membrane for High-Performance Osmotic Energy Generation</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2024-01-10</date><risdate>2024</risdate><volume>24</volume><issue>1</issue><spage>26</spage><epage>34</epage><pages>26-34</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Salinity gradient energy is an environmentally friendly energy source that possesses potential to meet the growing global energy demand. Although covalently modified nanoporous graphene membranes are prospective candidates to break the trade-off between ion selectivity and permeability, the random reaction sites and inevitable defects during modification reduce the reaction efficiency and energy conversion performance. Here, we developed a preanchoring method to achieve directional modification near the graphene nanopores periphery. Numerical simulation revealed that the improved surface charge density around nanopores results in exceptional K+/Cl– selectivity and osmotic energy conversion performance, which agreed well with experimental results. Ionic transport measurements showed that the directionally modified graphene membranes achieved an outstanding power density of 81.6 W m–2 with an energy conversion efficiency of 35.4% under a 100-fold salinity gradient, outperforming state-of-the-art graphene-based nanoporous membranes. This work provided a facile approach for precise modification of nanoporous graphene membranes and opened up new ways for osmotic power harvesting.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38117701</pmid><doi>10.1021/acs.nanolett.3c03041</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4175-6870</orcidid><orcidid>https://orcid.org/0000-0001-6222-7807</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2024-01, Vol.24 (1), p.26-34
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_2904573018
source ACS Publications
title Preanchoring Enabled Directional Modification of Atomically Thin Membrane for High-Performance Osmotic Energy Generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A43%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preanchoring%20Enabled%20Directional%20Modification%20of%20Atomically%20Thin%20Membrane%20for%20High-Performance%20Osmotic%20Energy%20Generation&rft.jtitle=Nano%20letters&rft.au=Liu,%20Yuancheng&rft.date=2024-01-10&rft.volume=24&rft.issue=1&rft.spage=26&rft.epage=34&rft.pages=26-34&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.3c03041&rft_dat=%3Cproquest_cross%3E2904573018%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904573018&rft_id=info:pmid/38117701&rfr_iscdi=true