Computational Design of Single‐atom Modified Ti‐MOFs for Photocatalytic CO2 Reduction to C1 Chemicals

In this work, density functional theory (DFT) calculations were conducted to investigate a series of transition metals (Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Ru, Rh, Pd, Ag, Hf, Ta, Os, Ir, and Pt) as single‐atom components introduced into Ti‐BPDC (BPDC=2,2′‐bipyridine‐5,5′‐dicarboxylic acid) as catal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSusChem 2024-04, Vol.17 (8), p.e202301619-n/a
Hauptverfasser: Wang, Shuang, Nie, Xiaowa, Lin, Jianbin, Ding, Fanshu, Song, Chunshan, Guo, Xinwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 8
container_start_page e202301619
container_title ChemSusChem
container_volume 17
creator Wang, Shuang
Nie, Xiaowa
Lin, Jianbin
Ding, Fanshu
Song, Chunshan
Guo, Xinwen
description In this work, density functional theory (DFT) calculations were conducted to investigate a series of transition metals (Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Ru, Rh, Pd, Ag, Hf, Ta, Os, Ir, and Pt) as single‐atom components introduced into Ti‐BPDC (BPDC=2,2′‐bipyridine‐5,5′‐dicarboxylic acid) as catalysts (M/Ti‐BPDC) for the photocatalytic reduction of CO2. The results show that Fe/Ti‐BPDC is the most active candidate for CO2 reduction to HCOOH due to its small limiting potential (−0.40 V). Ag, Cr, Mn, Ru, Zr, Nb, Rh, and Cu modified Ti‐BPDC are also active to HCOOH since their limiting potentials are moderate although the reaction mechanisms are different across these materials. Most of the studied catalysts show poor activity and selectivity to CO product because the stability of *COOH/*OCOH intermediates is significantly weaker than *OCHO/*HCOO species. The moderate binding strength of *CO on Pd/Ti‐BPDC is responsible for its superior catalytic activity toward CH3OH generation. Electronic structural analysis was performed to uncover the origin of the activity trend for CO2 reduction to different products on M/Ti‐BPDC. The calculation results indicate that the activity and selectivity of CO2 photoreduction can be effectively tuned by designing single‐atom metal‐based MOF catalysts. By screening and designing novel single‐atom modified Ti‐MOF catalysts to achieve CO2 photoreduction to C1 chemicals. Fe/Ti‐BPDC is the most active candidate for HCOOH production while Pd/Ti‐BPDC is promising for producing CH3OH. Electronic structure and intermediate stability effectively regulate the conversion pathway and catalytic performance.
doi_str_mv 10.1002/cssc.202301619
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2904567820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3046403133</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2669-b5a853acec96d12627e38cc5110bb8c7a5d5f7f55e7ffca484b3b9b6d9dab0e53</originalsourceid><addsrcrecordid>eNpdkL1OwzAUhSMEEqWwMltiYUnxT-zEIzIUkFoV0SKxWY5jt66SOMSJUDcegWfkSUgF6sB07j36dIYvii4RnCAI8Y0OQU8wxAQihvhRNEIZS2LKkrfjw03QaXQWwhZCBjljo8gJXzV9pzrna1WCOxPcugbegqWr16X5_vxSna_A3BfOOlOAlRuq-WIagPUteN74zmvVqXLXOQ3EAoMXU_R6vwY6DwQCYmMqp1UZzqMTO4S5-Mtx9Dq9X4nHeLZ4eBK3s7jBjPE4pyqjRGmjOSsQZjg1JNOaIgTzPNOpogW1qaXUpNZqlWRJTnKes4IXKoeGknF0_bvbtP69N6GTlQvalKWqje-DxBwmlKUZhgN69Q_d-r4dPARJYMISSBAhA8V_qQ9Xmp1sWlepdicRlHvtcq9dHrRLsVyKw0d-AHE-evo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3046403133</pqid></control><display><type>article</type><title>Computational Design of Single‐atom Modified Ti‐MOFs for Photocatalytic CO2 Reduction to C1 Chemicals</title><source>Wiley Journals</source><creator>Wang, Shuang ; Nie, Xiaowa ; Lin, Jianbin ; Ding, Fanshu ; Song, Chunshan ; Guo, Xinwen</creator><creatorcontrib>Wang, Shuang ; Nie, Xiaowa ; Lin, Jianbin ; Ding, Fanshu ; Song, Chunshan ; Guo, Xinwen</creatorcontrib><description>In this work, density functional theory (DFT) calculations were conducted to investigate a series of transition metals (Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Ru, Rh, Pd, Ag, Hf, Ta, Os, Ir, and Pt) as single‐atom components introduced into Ti‐BPDC (BPDC=2,2′‐bipyridine‐5,5′‐dicarboxylic acid) as catalysts (M/Ti‐BPDC) for the photocatalytic reduction of CO2. The results show that Fe/Ti‐BPDC is the most active candidate for CO2 reduction to HCOOH due to its small limiting potential (−0.40 V). Ag, Cr, Mn, Ru, Zr, Nb, Rh, and Cu modified Ti‐BPDC are also active to HCOOH since their limiting potentials are moderate although the reaction mechanisms are different across these materials. Most of the studied catalysts show poor activity and selectivity to CO product because the stability of *COOH/*OCOH intermediates is significantly weaker than *OCHO/*HCOO species. The moderate binding strength of *CO on Pd/Ti‐BPDC is responsible for its superior catalytic activity toward CH3OH generation. Electronic structural analysis was performed to uncover the origin of the activity trend for CO2 reduction to different products on M/Ti‐BPDC. The calculation results indicate that the activity and selectivity of CO2 photoreduction can be effectively tuned by designing single‐atom metal‐based MOF catalysts. By screening and designing novel single‐atom modified Ti‐MOF catalysts to achieve CO2 photoreduction to C1 chemicals. Fe/Ti‐BPDC is the most active candidate for HCOOH production while Pd/Ti‐BPDC is promising for producing CH3OH. Electronic structure and intermediate stability effectively regulate the conversion pathway and catalytic performance.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.202301619</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carbon dioxide ; Catalysts ; Catalytic activity ; Chromium ; CO2 Reduction ; Computational Design ; Constraining ; Copper ; Density Functional Theory ; Dicarboxylic acids ; Iridium ; Iron ; Manganese ; Mathematical analysis ; Metal-organic frameworks ; Niobium ; Palladium ; Photocatalysis ; Reaction mechanisms ; Rhodium ; Ruthenium ; Silver ; Single-atom modified Ti-MOFs ; Structural analysis ; Tantalum ; Titanium ; Transition metals ; Zirconium</subject><ispartof>ChemSusChem, 2024-04, Vol.17 (8), p.e202301619-n/a</ispartof><rights>2023 Wiley-VCH GmbH</rights><rights>2024 Wiley-VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2344-9911</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.202301619$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.202301619$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wang, Shuang</creatorcontrib><creatorcontrib>Nie, Xiaowa</creatorcontrib><creatorcontrib>Lin, Jianbin</creatorcontrib><creatorcontrib>Ding, Fanshu</creatorcontrib><creatorcontrib>Song, Chunshan</creatorcontrib><creatorcontrib>Guo, Xinwen</creatorcontrib><title>Computational Design of Single‐atom Modified Ti‐MOFs for Photocatalytic CO2 Reduction to C1 Chemicals</title><title>ChemSusChem</title><description>In this work, density functional theory (DFT) calculations were conducted to investigate a series of transition metals (Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Ru, Rh, Pd, Ag, Hf, Ta, Os, Ir, and Pt) as single‐atom components introduced into Ti‐BPDC (BPDC=2,2′‐bipyridine‐5,5′‐dicarboxylic acid) as catalysts (M/Ti‐BPDC) for the photocatalytic reduction of CO2. The results show that Fe/Ti‐BPDC is the most active candidate for CO2 reduction to HCOOH due to its small limiting potential (−0.40 V). Ag, Cr, Mn, Ru, Zr, Nb, Rh, and Cu modified Ti‐BPDC are also active to HCOOH since their limiting potentials are moderate although the reaction mechanisms are different across these materials. Most of the studied catalysts show poor activity and selectivity to CO product because the stability of *COOH/*OCOH intermediates is significantly weaker than *OCHO/*HCOO species. The moderate binding strength of *CO on Pd/Ti‐BPDC is responsible for its superior catalytic activity toward CH3OH generation. Electronic structural analysis was performed to uncover the origin of the activity trend for CO2 reduction to different products on M/Ti‐BPDC. The calculation results indicate that the activity and selectivity of CO2 photoreduction can be effectively tuned by designing single‐atom metal‐based MOF catalysts. By screening and designing novel single‐atom modified Ti‐MOF catalysts to achieve CO2 photoreduction to C1 chemicals. Fe/Ti‐BPDC is the most active candidate for HCOOH production while Pd/Ti‐BPDC is promising for producing CH3OH. Electronic structure and intermediate stability effectively regulate the conversion pathway and catalytic performance.</description><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chromium</subject><subject>CO2 Reduction</subject><subject>Computational Design</subject><subject>Constraining</subject><subject>Copper</subject><subject>Density Functional Theory</subject><subject>Dicarboxylic acids</subject><subject>Iridium</subject><subject>Iron</subject><subject>Manganese</subject><subject>Mathematical analysis</subject><subject>Metal-organic frameworks</subject><subject>Niobium</subject><subject>Palladium</subject><subject>Photocatalysis</subject><subject>Reaction mechanisms</subject><subject>Rhodium</subject><subject>Ruthenium</subject><subject>Silver</subject><subject>Single-atom modified Ti-MOFs</subject><subject>Structural analysis</subject><subject>Tantalum</subject><subject>Titanium</subject><subject>Transition metals</subject><subject>Zirconium</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkL1OwzAUhSMEEqWwMltiYUnxT-zEIzIUkFoV0SKxWY5jt66SOMSJUDcegWfkSUgF6sB07j36dIYvii4RnCAI8Y0OQU8wxAQihvhRNEIZS2LKkrfjw03QaXQWwhZCBjljo8gJXzV9pzrna1WCOxPcugbegqWr16X5_vxSna_A3BfOOlOAlRuq-WIagPUteN74zmvVqXLXOQ3EAoMXU_R6vwY6DwQCYmMqp1UZzqMTO4S5-Mtx9Dq9X4nHeLZ4eBK3s7jBjPE4pyqjRGmjOSsQZjg1JNOaIgTzPNOpogW1qaXUpNZqlWRJTnKes4IXKoeGknF0_bvbtP69N6GTlQvalKWqje-DxBwmlKUZhgN69Q_d-r4dPARJYMISSBAhA8V_qQ9Xmp1sWlepdicRlHvtcq9dHrRLsVyKw0d-AHE-evo</recordid><startdate>20240422</startdate><enddate>20240422</enddate><creator>Wang, Shuang</creator><creator>Nie, Xiaowa</creator><creator>Lin, Jianbin</creator><creator>Ding, Fanshu</creator><creator>Song, Chunshan</creator><creator>Guo, Xinwen</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2344-9911</orcidid></search><sort><creationdate>20240422</creationdate><title>Computational Design of Single‐atom Modified Ti‐MOFs for Photocatalytic CO2 Reduction to C1 Chemicals</title><author>Wang, Shuang ; Nie, Xiaowa ; Lin, Jianbin ; Ding, Fanshu ; Song, Chunshan ; Guo, Xinwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2669-b5a853acec96d12627e38cc5110bb8c7a5d5f7f55e7ffca484b3b9b6d9dab0e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chromium</topic><topic>CO2 Reduction</topic><topic>Computational Design</topic><topic>Constraining</topic><topic>Copper</topic><topic>Density Functional Theory</topic><topic>Dicarboxylic acids</topic><topic>Iridium</topic><topic>Iron</topic><topic>Manganese</topic><topic>Mathematical analysis</topic><topic>Metal-organic frameworks</topic><topic>Niobium</topic><topic>Palladium</topic><topic>Photocatalysis</topic><topic>Reaction mechanisms</topic><topic>Rhodium</topic><topic>Ruthenium</topic><topic>Silver</topic><topic>Single-atom modified Ti-MOFs</topic><topic>Structural analysis</topic><topic>Tantalum</topic><topic>Titanium</topic><topic>Transition metals</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shuang</creatorcontrib><creatorcontrib>Nie, Xiaowa</creatorcontrib><creatorcontrib>Lin, Jianbin</creatorcontrib><creatorcontrib>Ding, Fanshu</creatorcontrib><creatorcontrib>Song, Chunshan</creatorcontrib><creatorcontrib>Guo, Xinwen</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Shuang</au><au>Nie, Xiaowa</au><au>Lin, Jianbin</au><au>Ding, Fanshu</au><au>Song, Chunshan</au><au>Guo, Xinwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Design of Single‐atom Modified Ti‐MOFs for Photocatalytic CO2 Reduction to C1 Chemicals</atitle><jtitle>ChemSusChem</jtitle><date>2024-04-22</date><risdate>2024</risdate><volume>17</volume><issue>8</issue><spage>e202301619</spage><epage>n/a</epage><pages>e202301619-n/a</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>In this work, density functional theory (DFT) calculations were conducted to investigate a series of transition metals (Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Ru, Rh, Pd, Ag, Hf, Ta, Os, Ir, and Pt) as single‐atom components introduced into Ti‐BPDC (BPDC=2,2′‐bipyridine‐5,5′‐dicarboxylic acid) as catalysts (M/Ti‐BPDC) for the photocatalytic reduction of CO2. The results show that Fe/Ti‐BPDC is the most active candidate for CO2 reduction to HCOOH due to its small limiting potential (−0.40 V). Ag, Cr, Mn, Ru, Zr, Nb, Rh, and Cu modified Ti‐BPDC are also active to HCOOH since their limiting potentials are moderate although the reaction mechanisms are different across these materials. Most of the studied catalysts show poor activity and selectivity to CO product because the stability of *COOH/*OCOH intermediates is significantly weaker than *OCHO/*HCOO species. The moderate binding strength of *CO on Pd/Ti‐BPDC is responsible for its superior catalytic activity toward CH3OH generation. Electronic structural analysis was performed to uncover the origin of the activity trend for CO2 reduction to different products on M/Ti‐BPDC. The calculation results indicate that the activity and selectivity of CO2 photoreduction can be effectively tuned by designing single‐atom metal‐based MOF catalysts. By screening and designing novel single‐atom modified Ti‐MOF catalysts to achieve CO2 photoreduction to C1 chemicals. Fe/Ti‐BPDC is the most active candidate for HCOOH production while Pd/Ti‐BPDC is promising for producing CH3OH. Electronic structure and intermediate stability effectively regulate the conversion pathway and catalytic performance.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cssc.202301619</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2344-9911</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1864-5631
ispartof ChemSusChem, 2024-04, Vol.17 (8), p.e202301619-n/a
issn 1864-5631
1864-564X
language eng
recordid cdi_proquest_miscellaneous_2904567820
source Wiley Journals
subjects Carbon dioxide
Catalysts
Catalytic activity
Chromium
CO2 Reduction
Computational Design
Constraining
Copper
Density Functional Theory
Dicarboxylic acids
Iridium
Iron
Manganese
Mathematical analysis
Metal-organic frameworks
Niobium
Palladium
Photocatalysis
Reaction mechanisms
Rhodium
Ruthenium
Silver
Single-atom modified Ti-MOFs
Structural analysis
Tantalum
Titanium
Transition metals
Zirconium
title Computational Design of Single‐atom Modified Ti‐MOFs for Photocatalytic CO2 Reduction to C1 Chemicals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A38%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Design%20of%20Single%E2%80%90atom%20Modified%20Ti%E2%80%90MOFs%20for%20Photocatalytic%20CO2%20Reduction%20to%20C1%20Chemicals&rft.jtitle=ChemSusChem&rft.au=Wang,%20Shuang&rft.date=2024-04-22&rft.volume=17&rft.issue=8&rft.spage=e202301619&rft.epage=n/a&rft.pages=e202301619-n/a&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.202301619&rft_dat=%3Cproquest_wiley%3E3046403133%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3046403133&rft_id=info:pmid/&rfr_iscdi=true