Stagewise Newton, differential dynamic programming, and neighboring optimum control for neural-network learning

The theory of optimal control is applied to multi-stage (i.e., multiple-layered) neural-network (NN) learning for developing efficient second-order algorithms, expressed in NN notation. In particular, we compare differential dynamic programming, neighboring optimum control, and stagewise Newton meth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mizutani, E., Dreyfus, S.E.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1336 vol. 2
container_issue
container_start_page 1331
container_title
container_volume
creator Mizutani, E.
Dreyfus, S.E.
description The theory of optimal control is applied to multi-stage (i.e., multiple-layered) neural-network (NN) learning for developing efficient second-order algorithms, expressed in NN notation. In particular, we compare differential dynamic programming, neighboring optimum control, and stagewise Newton methods. Understanding their strengths and weaknesses would prove useful in pursuit of an effective intermediate step between the steepest descent and the Newton directions, arising in supervised NN-learning as well as reinforcement learning with function approximators.
doi_str_mv 10.1109/ACC.2005.1470149
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_proquest_miscellaneous_29044553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1470149</ieee_id><sourcerecordid>29044553</sourcerecordid><originalsourceid>FETCH-LOGICAL-i206t-22823b07bb6314cba1206ea99b12c9e407f2b35c0b271353430a097601899dd63</originalsourceid><addsrcrecordid>eNo1kEtrwzAQhNUXNElzL_SiU09xupJsy3sMoS8I7aHt2cj22lVrS6nsEPLva0gLAwszH8swjF0LWAoBeLdar5cSIFmKWIOI8YTNUWcwSiEg6lM2kUpnUZKl4oxN_4MMz9kEdKwikQq8ZNO-_wIQiClMmH8bTEN72xN_of3g3YJXtq4pkBusaXl1cKazJd8G3wTTddY1C25cxR3Z5rPwYTS43w6223W89G4IvuW1D2O-C6aNHA17H755Sya4kb1iF7Vpe5r_3Rn7eLh_Xz9Fm9fH5_VqE1kJ6RBJmUlVgC6KVIm4LIwYbTKIhZAlUgy6loVKSiikFipRsQIDqFMQGWJVpWrGbo9_x-I_O-qHvLN9SW1rHPldn0uEOE4SNYI3R9ASUb4NtjPhkP8trH4BJ1hryg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>29044553</pqid></control><display><type>conference_proceeding</type><title>Stagewise Newton, differential dynamic programming, and neighboring optimum control for neural-network learning</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Mizutani, E. ; Dreyfus, S.E.</creator><creatorcontrib>Mizutani, E. ; Dreyfus, S.E.</creatorcontrib><description>The theory of optimal control is applied to multi-stage (i.e., multiple-layered) neural-network (NN) learning for developing efficient second-order algorithms, expressed in NN notation. In particular, we compare differential dynamic programming, neighboring optimum control, and stagewise Newton methods. Understanding their strengths and weaknesses would prove useful in pursuit of an effective intermediate step between the steepest descent and the Newton directions, arising in supervised NN-learning as well as reinforcement learning with function approximators.</description><identifier>ISSN: 0743-1619</identifier><identifier>ISBN: 0780390989</identifier><identifier>ISBN: 9780780390980</identifier><identifier>ISBN: 9780780390997</identifier><identifier>ISBN: 0780390997</identifier><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 9780780390997</identifier><identifier>EISBN: 0780390997</identifier><identifier>DOI: 10.1109/ACC.2005.1470149</identifier><language>eng</language><publisher>IEEE</publisher><subject>Boundary conditions ; Costs ; Difference equations ; Dynamic programming ; Lagrangian functions ; Learning ; Neural networks ; Newton method ; Optimal control ; Performance analysis</subject><ispartof>2005 American Control Conference, 2005, p.1331-1336 vol. 2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1470149$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1470149$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mizutani, E.</creatorcontrib><creatorcontrib>Dreyfus, S.E.</creatorcontrib><title>Stagewise Newton, differential dynamic programming, and neighboring optimum control for neural-network learning</title><title>2005 American Control Conference</title><addtitle>ACC</addtitle><description>The theory of optimal control is applied to multi-stage (i.e., multiple-layered) neural-network (NN) learning for developing efficient second-order algorithms, expressed in NN notation. In particular, we compare differential dynamic programming, neighboring optimum control, and stagewise Newton methods. Understanding their strengths and weaknesses would prove useful in pursuit of an effective intermediate step between the steepest descent and the Newton directions, arising in supervised NN-learning as well as reinforcement learning with function approximators.</description><subject>Boundary conditions</subject><subject>Costs</subject><subject>Difference equations</subject><subject>Dynamic programming</subject><subject>Lagrangian functions</subject><subject>Learning</subject><subject>Neural networks</subject><subject>Newton method</subject><subject>Optimal control</subject><subject>Performance analysis</subject><issn>0743-1619</issn><issn>2378-5861</issn><isbn>0780390989</isbn><isbn>9780780390980</isbn><isbn>9780780390997</isbn><isbn>0780390997</isbn><isbn>9780780390997</isbn><isbn>0780390997</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kEtrwzAQhNUXNElzL_SiU09xupJsy3sMoS8I7aHt2cj22lVrS6nsEPLva0gLAwszH8swjF0LWAoBeLdar5cSIFmKWIOI8YTNUWcwSiEg6lM2kUpnUZKl4oxN_4MMz9kEdKwikQq8ZNO-_wIQiClMmH8bTEN72xN_of3g3YJXtq4pkBusaXl1cKazJd8G3wTTddY1C25cxR3Z5rPwYTS43w6223W89G4IvuW1D2O-C6aNHA17H755Sya4kb1iF7Vpe5r_3Rn7eLh_Xz9Fm9fH5_VqE1kJ6RBJmUlVgC6KVIm4LIwYbTKIhZAlUgy6loVKSiikFipRsQIDqFMQGWJVpWrGbo9_x-I_O-qHvLN9SW1rHPldn0uEOE4SNYI3R9ASUb4NtjPhkP8trH4BJ1hryg</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Mizutani, E.</creator><creator>Dreyfus, S.E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2005</creationdate><title>Stagewise Newton, differential dynamic programming, and neighboring optimum control for neural-network learning</title><author>Mizutani, E. ; Dreyfus, S.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i206t-22823b07bb6314cba1206ea99b12c9e407f2b35c0b271353430a097601899dd63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Boundary conditions</topic><topic>Costs</topic><topic>Difference equations</topic><topic>Dynamic programming</topic><topic>Lagrangian functions</topic><topic>Learning</topic><topic>Neural networks</topic><topic>Newton method</topic><topic>Optimal control</topic><topic>Performance analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Mizutani, E.</creatorcontrib><creatorcontrib>Dreyfus, S.E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mizutani, E.</au><au>Dreyfus, S.E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Stagewise Newton, differential dynamic programming, and neighboring optimum control for neural-network learning</atitle><btitle>2005 American Control Conference</btitle><stitle>ACC</stitle><date>2005</date><risdate>2005</risdate><spage>1331</spage><epage>1336 vol. 2</epage><pages>1331-1336 vol. 2</pages><issn>0743-1619</issn><eissn>2378-5861</eissn><isbn>0780390989</isbn><isbn>9780780390980</isbn><isbn>9780780390997</isbn><isbn>0780390997</isbn><eisbn>9780780390997</eisbn><eisbn>0780390997</eisbn><abstract>The theory of optimal control is applied to multi-stage (i.e., multiple-layered) neural-network (NN) learning for developing efficient second-order algorithms, expressed in NN notation. In particular, we compare differential dynamic programming, neighboring optimum control, and stagewise Newton methods. Understanding their strengths and weaknesses would prove useful in pursuit of an effective intermediate step between the steepest descent and the Newton directions, arising in supervised NN-learning as well as reinforcement learning with function approximators.</abstract><pub>IEEE</pub><doi>10.1109/ACC.2005.1470149</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0743-1619
ispartof 2005 American Control Conference, 2005, p.1331-1336 vol. 2
issn 0743-1619
2378-5861
language eng
recordid cdi_proquest_miscellaneous_29044553
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Boundary conditions
Costs
Difference equations
Dynamic programming
Lagrangian functions
Learning
Neural networks
Newton method
Optimal control
Performance analysis
title Stagewise Newton, differential dynamic programming, and neighboring optimum control for neural-network learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A59%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Stagewise%20Newton,%20differential%20dynamic%20programming,%20and%20neighboring%20optimum%20control%20for%20neural-network%20learning&rft.btitle=2005%20American%20Control%20Conference&rft.au=Mizutani,%20E.&rft.date=2005&rft.spage=1331&rft.epage=1336%20vol.%202&rft.pages=1331-1336%20vol.%202&rft.issn=0743-1619&rft.eissn=2378-5861&rft.isbn=0780390989&rft.isbn_list=9780780390980&rft.isbn_list=9780780390997&rft.isbn_list=0780390997&rft_id=info:doi/10.1109/ACC.2005.1470149&rft_dat=%3Cproquest_6IE%3E29044553%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780780390997&rft.eisbn_list=0780390997&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29044553&rft_id=info:pmid/&rft_ieee_id=1470149&rfr_iscdi=true