Finite sample corrections for average equivalence testing

Average (bio)equivalence tests are used to assess if a parameter, like the mean difference in treatment response between two conditions for example, lies within a given equivalence interval, hence allowing to conclude that the conditions have “equivalent” means. The two one‐sided tests (TOST) proced...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine 2024-02, Vol.43 (5), p.833-854
Hauptverfasser: Boulaguiem, Younes, Quartier, Julie, Lapteva, Maria, Kalia, Yogeshvar N., Victoria‐Feser, Maria‐Pia, Guerrier, Stéphane, Couturier, Dominique‐Laurent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 854
container_issue 5
container_start_page 833
container_title Statistics in medicine
container_volume 43
creator Boulaguiem, Younes
Quartier, Julie
Lapteva, Maria
Kalia, Yogeshvar N.
Victoria‐Feser, Maria‐Pia
Guerrier, Stéphane
Couturier, Dominique‐Laurent
description Average (bio)equivalence tests are used to assess if a parameter, like the mean difference in treatment response between two conditions for example, lies within a given equivalence interval, hence allowing to conclude that the conditions have “equivalent” means. The two one‐sided tests (TOST) procedure, consisting in testing whether the target parameter is respectively significantly greater and lower than some pre‐defined lower and upper equivalence limits, is typically used in this context, usually by checking whether the confidence interval for the target parameter lies within these limits. This intuitive and visual procedure is however known to be conservative, especially in the case of highly variable drugs, where it shows a rapid power loss, often reaching zero, hence making it impossible to conclude for equivalence when it is actually true. Here, we propose a finite sample correction of the TOST procedure, the α$$ \alpha $$‐TOST, which consists in a correction of the significance level of the TOST allowing to guarantee a test size (or type‐I error rate) of α$$ \alpha $$. This new procedure essentially corresponds to a finite sample and variability correction of the TOST procedure. We show that this procedure is uniformly more powerful than the TOST, easy to compute, and that its operating characteristics outperform the ones of its competitors. A case study about econazole nitrate deposition in porcine skin is used to illustrate the benefits of the proposed method and its advantages compared to other available procedures.
doi_str_mv 10.1002/sim.9993
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2904156172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2904156172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3833-83ccc99ca3cfce789a67a6449c058b290010791ac9e079a1c72fd776539aa9c13</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRbK2Cv0ACbtxE55FkcpdSrBYqLtR1mN7elCl5tDNNpf_eqa0KgqtzFx_fPRzGLgW_FZzLO2_rWwBQR6wvOOiYyzQ_Zn0utY4zLdIeO_N-wbkQqdSnrKfycAmAPoORbeyaIm_qZUURts4Rrm3b-KhsXWQ25MycIlp1dmMqapCiNfm1bebn7KQ0laeLQw7Y--jhbfgUT14ex8P7SYwqVyrOFSICoFFYIukcTKZNliSAPM2nEkIprkEYBAppBGpZzrTOUgXGAAo1YDd779K1qy78LmrrkarKNNR2vgiKRKSZ0DKg13_QRdu5JrQLlMyTJJUq-RWia713VBZLZ2vjtoXgxW7OIsxZ7OYM6NVB2E1rmv2A3_sFIN4DH7ai7b-i4nX8_CX8BJhGfPE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2928445234</pqid></control><display><type>article</type><title>Finite sample corrections for average equivalence testing</title><source>Wiley Online Library</source><creator>Boulaguiem, Younes ; Quartier, Julie ; Lapteva, Maria ; Kalia, Yogeshvar N. ; Victoria‐Feser, Maria‐Pia ; Guerrier, Stéphane ; Couturier, Dominique‐Laurent</creator><creatorcontrib>Boulaguiem, Younes ; Quartier, Julie ; Lapteva, Maria ; Kalia, Yogeshvar N. ; Victoria‐Feser, Maria‐Pia ; Guerrier, Stéphane ; Couturier, Dominique‐Laurent</creatorcontrib><description>Average (bio)equivalence tests are used to assess if a parameter, like the mean difference in treatment response between two conditions for example, lies within a given equivalence interval, hence allowing to conclude that the conditions have “equivalent” means. The two one‐sided tests (TOST) procedure, consisting in testing whether the target parameter is respectively significantly greater and lower than some pre‐defined lower and upper equivalence limits, is typically used in this context, usually by checking whether the confidence interval for the target parameter lies within these limits. This intuitive and visual procedure is however known to be conservative, especially in the case of highly variable drugs, where it shows a rapid power loss, often reaching zero, hence making it impossible to conclude for equivalence when it is actually true. Here, we propose a finite sample correction of the TOST procedure, the α$$ \alpha $$‐TOST, which consists in a correction of the significance level of the TOST allowing to guarantee a test size (or type‐I error rate) of α$$ \alpha $$. This new procedure essentially corresponds to a finite sample and variability correction of the TOST procedure. We show that this procedure is uniformly more powerful than the TOST, easy to compute, and that its operating characteristics outperform the ones of its competitors. A case study about econazole nitrate deposition in porcine skin is used to illustrate the benefits of the proposed method and its advantages compared to other available procedures.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.9993</identifier><identifier>PMID: 38115199</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Bioequivalence ; interval inclusion principle ; scaled average bioequivalence ; similarity test ; two one‐sided test</subject><ispartof>Statistics in medicine, 2024-02, Vol.43 (5), p.833-854</ispartof><rights>2023 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2023 The Authors. Statistics in Medicine published by John Wiley &amp; Sons Ltd.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3833-83ccc99ca3cfce789a67a6449c058b290010791ac9e079a1c72fd776539aa9c13</citedby><cites>FETCH-LOGICAL-c3833-83ccc99ca3cfce789a67a6449c058b290010791ac9e079a1c72fd776539aa9c13</cites><orcidid>0000-0003-0795-0714</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.9993$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.9993$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38115199$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Boulaguiem, Younes</creatorcontrib><creatorcontrib>Quartier, Julie</creatorcontrib><creatorcontrib>Lapteva, Maria</creatorcontrib><creatorcontrib>Kalia, Yogeshvar N.</creatorcontrib><creatorcontrib>Victoria‐Feser, Maria‐Pia</creatorcontrib><creatorcontrib>Guerrier, Stéphane</creatorcontrib><creatorcontrib>Couturier, Dominique‐Laurent</creatorcontrib><title>Finite sample corrections for average equivalence testing</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>Average (bio)equivalence tests are used to assess if a parameter, like the mean difference in treatment response between two conditions for example, lies within a given equivalence interval, hence allowing to conclude that the conditions have “equivalent” means. The two one‐sided tests (TOST) procedure, consisting in testing whether the target parameter is respectively significantly greater and lower than some pre‐defined lower and upper equivalence limits, is typically used in this context, usually by checking whether the confidence interval for the target parameter lies within these limits. This intuitive and visual procedure is however known to be conservative, especially in the case of highly variable drugs, where it shows a rapid power loss, often reaching zero, hence making it impossible to conclude for equivalence when it is actually true. Here, we propose a finite sample correction of the TOST procedure, the α$$ \alpha $$‐TOST, which consists in a correction of the significance level of the TOST allowing to guarantee a test size (or type‐I error rate) of α$$ \alpha $$. This new procedure essentially corresponds to a finite sample and variability correction of the TOST procedure. We show that this procedure is uniformly more powerful than the TOST, easy to compute, and that its operating characteristics outperform the ones of its competitors. A case study about econazole nitrate deposition in porcine skin is used to illustrate the benefits of the proposed method and its advantages compared to other available procedures.</description><subject>Bioequivalence</subject><subject>interval inclusion principle</subject><subject>scaled average bioequivalence</subject><subject>similarity test</subject><subject>two one‐sided test</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kEtLw0AUhQdRbK2Cv0ACbtxE55FkcpdSrBYqLtR1mN7elCl5tDNNpf_eqa0KgqtzFx_fPRzGLgW_FZzLO2_rWwBQR6wvOOiYyzQ_Zn0utY4zLdIeO_N-wbkQqdSnrKfycAmAPoORbeyaIm_qZUURts4Rrm3b-KhsXWQ25MycIlp1dmMqapCiNfm1bebn7KQ0laeLQw7Y--jhbfgUT14ex8P7SYwqVyrOFSICoFFYIukcTKZNliSAPM2nEkIprkEYBAppBGpZzrTOUgXGAAo1YDd779K1qy78LmrrkarKNNR2vgiKRKSZ0DKg13_QRdu5JrQLlMyTJJUq-RWia713VBZLZ2vjtoXgxW7OIsxZ7OYM6NVB2E1rmv2A3_sFIN4DH7ai7b-i4nX8_CX8BJhGfPE</recordid><startdate>20240228</startdate><enddate>20240228</enddate><creator>Boulaguiem, Younes</creator><creator>Quartier, Julie</creator><creator>Lapteva, Maria</creator><creator>Kalia, Yogeshvar N.</creator><creator>Victoria‐Feser, Maria‐Pia</creator><creator>Guerrier, Stéphane</creator><creator>Couturier, Dominique‐Laurent</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0795-0714</orcidid></search><sort><creationdate>20240228</creationdate><title>Finite sample corrections for average equivalence testing</title><author>Boulaguiem, Younes ; Quartier, Julie ; Lapteva, Maria ; Kalia, Yogeshvar N. ; Victoria‐Feser, Maria‐Pia ; Guerrier, Stéphane ; Couturier, Dominique‐Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3833-83ccc99ca3cfce789a67a6449c058b290010791ac9e079a1c72fd776539aa9c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bioequivalence</topic><topic>interval inclusion principle</topic><topic>scaled average bioequivalence</topic><topic>similarity test</topic><topic>two one‐sided test</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boulaguiem, Younes</creatorcontrib><creatorcontrib>Quartier, Julie</creatorcontrib><creatorcontrib>Lapteva, Maria</creatorcontrib><creatorcontrib>Kalia, Yogeshvar N.</creatorcontrib><creatorcontrib>Victoria‐Feser, Maria‐Pia</creatorcontrib><creatorcontrib>Guerrier, Stéphane</creatorcontrib><creatorcontrib>Couturier, Dominique‐Laurent</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boulaguiem, Younes</au><au>Quartier, Julie</au><au>Lapteva, Maria</au><au>Kalia, Yogeshvar N.</au><au>Victoria‐Feser, Maria‐Pia</au><au>Guerrier, Stéphane</au><au>Couturier, Dominique‐Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite sample corrections for average equivalence testing</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2024-02-28</date><risdate>2024</risdate><volume>43</volume><issue>5</issue><spage>833</spage><epage>854</epage><pages>833-854</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>Average (bio)equivalence tests are used to assess if a parameter, like the mean difference in treatment response between two conditions for example, lies within a given equivalence interval, hence allowing to conclude that the conditions have “equivalent” means. The two one‐sided tests (TOST) procedure, consisting in testing whether the target parameter is respectively significantly greater and lower than some pre‐defined lower and upper equivalence limits, is typically used in this context, usually by checking whether the confidence interval for the target parameter lies within these limits. This intuitive and visual procedure is however known to be conservative, especially in the case of highly variable drugs, where it shows a rapid power loss, often reaching zero, hence making it impossible to conclude for equivalence when it is actually true. Here, we propose a finite sample correction of the TOST procedure, the α$$ \alpha $$‐TOST, which consists in a correction of the significance level of the TOST allowing to guarantee a test size (or type‐I error rate) of α$$ \alpha $$. This new procedure essentially corresponds to a finite sample and variability correction of the TOST procedure. We show that this procedure is uniformly more powerful than the TOST, easy to compute, and that its operating characteristics outperform the ones of its competitors. A case study about econazole nitrate deposition in porcine skin is used to illustrate the benefits of the proposed method and its advantages compared to other available procedures.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>38115199</pmid><doi>10.1002/sim.9993</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-0795-0714</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2024-02, Vol.43 (5), p.833-854
issn 0277-6715
1097-0258
language eng
recordid cdi_proquest_miscellaneous_2904156172
source Wiley Online Library
subjects Bioequivalence
interval inclusion principle
scaled average bioequivalence
similarity test
two one‐sided test
title Finite sample corrections for average equivalence testing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A25%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20sample%20corrections%20for%20average%20equivalence%20testing&rft.jtitle=Statistics%20in%20medicine&rft.au=Boulaguiem,%20Younes&rft.date=2024-02-28&rft.volume=43&rft.issue=5&rft.spage=833&rft.epage=854&rft.pages=833-854&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.9993&rft_dat=%3Cproquest_cross%3E2904156172%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2928445234&rft_id=info:pmid/38115199&rfr_iscdi=true