GCDN-Net: Garbage classifier deep neural network for recyclable urban waste management

The escalating waste volume due to urbanization and population growth has underscored the need for advanced waste sorting and recycling methods to ensure sustainable waste management. Deep learning models, adept at image recognition tasks, offer potential solutions for waste sorting applications. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Waste management (Elmsford) 2024-02, Vol.174, p.439-450
Hauptverfasser: Hossen, Md Mosarrof, Ashraf, Azad, Hasan, Mazhar, Majid, Molla E, Nashbat, Mohammad, Kashem, Saad Bin Abul, Kunju, Ali K Ansaruddin, Khandakar, Amith, Mahmud, Sakib, Chowdhury, Muhammad E H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 450
container_issue
container_start_page 439
container_title Waste management (Elmsford)
container_volume 174
creator Hossen, Md Mosarrof
Ashraf, Azad
Hasan, Mazhar
Majid, Molla E
Nashbat, Mohammad
Kashem, Saad Bin Abul
Kunju, Ali K Ansaruddin
Khandakar, Amith
Mahmud, Sakib
Chowdhury, Muhammad E H
description The escalating waste volume due to urbanization and population growth has underscored the need for advanced waste sorting and recycling methods to ensure sustainable waste management. Deep learning models, adept at image recognition tasks, offer potential solutions for waste sorting applications. These models, trained on extensive waste image datasets, possess the ability to discern unique features of diverse waste types. Automating waste sorting hinges on robust deep learning models capable of accurately categorizing a wide range of waste types. In this study, a multi-stage machine learning approach is proposed to classify different waste categories using the "Garbage In, Garbage Out" (GIGO) dataset of 25,000 images. The novel Garbage Classifier Deep Neural Network (GCDN-Net) is introduced as a comprehensive solution, adept in both single-label and multi-label classification tasks. Single-label classification distinguishes between garbage and non-garbage images, while multi-label classification identifies distinct garbage categories within single or multiple images. The performance of GCDN-Net is rigorously evaluated and compared against state-of-the-art waste classification methods. Results demonstrate GCDN-Net's excellence, achieving 95.77% accuracy, 95.78% precision, 95.77% recall, 95.77% F1-score, and 95.54% specificity when classifying waste images, outperforming existing models in single-label classification. In multi-label classification, GCDN-Net attains an overall Mean Average Precision (mAP) of 0.69 and an F1-score of 75.01%. The reliability of network performance is affirmed through saliency map-based visualization generated by Score-CAM (class activation mapping). In conclusion, deep learning-based models exhibit efficacy in categorizing diverse waste types, paving the way for automated waste sorting and recycling systems that can mitigate costs and processing times.
doi_str_mv 10.1016/j.wasman.2023.12.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2904154429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153186286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-62b177a85bb0858c0bcc4f66dc9c7ed7be814ee070b868a43238866216f189043</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EouXxBwh5ySbBYzuOww4VKEiobACxs2x3glryKHYixN9jVGDL6m7OvTM6hJwAy4GBOl_nHza2tss54yIHnjOQO2QKuqwyLgu1S6asKlTGCvEyIQcxrlkiNLB9MhEaQChVTcnzfHa1yBY4XNC5Dc6-IvWNjXFVrzDQJeKGdjgG26QYPvrwRus-0ID-M2GuQTqmUkfTKwPS9E0aaLEbjshebZuIxz95SJ5urh9nt9n9w_xudnmfeSHZkCnuoCytLpxjutCeOe9lrdTSV77EZelQg0RkJXNaaSsFF1orxUHVoCsmxSE52-5uQv8-YhxMu4oem8Z22I_RCCgEaMW1-hflaQ8KKXmVULlFfehjDFibTVi1NnwaYOZbvlmbrXzzLd8AN0ltqp3-XBhdi8u_0q9t8QWUYYEa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904154429</pqid></control><display><type>article</type><title>GCDN-Net: Garbage classifier deep neural network for recyclable urban waste management</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Hossen, Md Mosarrof ; Ashraf, Azad ; Hasan, Mazhar ; Majid, Molla E ; Nashbat, Mohammad ; Kashem, Saad Bin Abul ; Kunju, Ali K Ansaruddin ; Khandakar, Amith ; Mahmud, Sakib ; Chowdhury, Muhammad E H</creator><creatorcontrib>Hossen, Md Mosarrof ; Ashraf, Azad ; Hasan, Mazhar ; Majid, Molla E ; Nashbat, Mohammad ; Kashem, Saad Bin Abul ; Kunju, Ali K Ansaruddin ; Khandakar, Amith ; Mahmud, Sakib ; Chowdhury, Muhammad E H</creatorcontrib><description>The escalating waste volume due to urbanization and population growth has underscored the need for advanced waste sorting and recycling methods to ensure sustainable waste management. Deep learning models, adept at image recognition tasks, offer potential solutions for waste sorting applications. These models, trained on extensive waste image datasets, possess the ability to discern unique features of diverse waste types. Automating waste sorting hinges on robust deep learning models capable of accurately categorizing a wide range of waste types. In this study, a multi-stage machine learning approach is proposed to classify different waste categories using the "Garbage In, Garbage Out" (GIGO) dataset of 25,000 images. The novel Garbage Classifier Deep Neural Network (GCDN-Net) is introduced as a comprehensive solution, adept in both single-label and multi-label classification tasks. Single-label classification distinguishes between garbage and non-garbage images, while multi-label classification identifies distinct garbage categories within single or multiple images. The performance of GCDN-Net is rigorously evaluated and compared against state-of-the-art waste classification methods. Results demonstrate GCDN-Net's excellence, achieving 95.77% accuracy, 95.78% precision, 95.77% recall, 95.77% F1-score, and 95.54% specificity when classifying waste images, outperforming existing models in single-label classification. In multi-label classification, GCDN-Net attains an overall Mean Average Precision (mAP) of 0.69 and an F1-score of 75.01%. The reliability of network performance is affirmed through saliency map-based visualization generated by Score-CAM (class activation mapping). In conclusion, deep learning-based models exhibit efficacy in categorizing diverse waste types, paving the way for automated waste sorting and recycling systems that can mitigate costs and processing times.</description><identifier>ISSN: 0956-053X</identifier><identifier>EISSN: 1879-2456</identifier><identifier>DOI: 10.1016/j.wasman.2023.12.014</identifier><identifier>PMID: 38113669</identifier><language>eng</language><publisher>United States</publisher><subject>automation ; data collection ; Garbage ; Machine Learning ; municipal solid waste ; Neural Networks, Computer ; population growth ; Reproducibility of Results ; urbanization ; Waste Management</subject><ispartof>Waste management (Elmsford), 2024-02, Vol.174, p.439-450</ispartof><rights>Copyright © 2023 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-62b177a85bb0858c0bcc4f66dc9c7ed7be814ee070b868a43238866216f189043</citedby><cites>FETCH-LOGICAL-c340t-62b177a85bb0858c0bcc4f66dc9c7ed7be814ee070b868a43238866216f189043</cites><orcidid>0009-0007-2372-5791 ; 0000-0002-4599-2192</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38113669$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hossen, Md Mosarrof</creatorcontrib><creatorcontrib>Ashraf, Azad</creatorcontrib><creatorcontrib>Hasan, Mazhar</creatorcontrib><creatorcontrib>Majid, Molla E</creatorcontrib><creatorcontrib>Nashbat, Mohammad</creatorcontrib><creatorcontrib>Kashem, Saad Bin Abul</creatorcontrib><creatorcontrib>Kunju, Ali K Ansaruddin</creatorcontrib><creatorcontrib>Khandakar, Amith</creatorcontrib><creatorcontrib>Mahmud, Sakib</creatorcontrib><creatorcontrib>Chowdhury, Muhammad E H</creatorcontrib><title>GCDN-Net: Garbage classifier deep neural network for recyclable urban waste management</title><title>Waste management (Elmsford)</title><addtitle>Waste Manag</addtitle><description>The escalating waste volume due to urbanization and population growth has underscored the need for advanced waste sorting and recycling methods to ensure sustainable waste management. Deep learning models, adept at image recognition tasks, offer potential solutions for waste sorting applications. These models, trained on extensive waste image datasets, possess the ability to discern unique features of diverse waste types. Automating waste sorting hinges on robust deep learning models capable of accurately categorizing a wide range of waste types. In this study, a multi-stage machine learning approach is proposed to classify different waste categories using the "Garbage In, Garbage Out" (GIGO) dataset of 25,000 images. The novel Garbage Classifier Deep Neural Network (GCDN-Net) is introduced as a comprehensive solution, adept in both single-label and multi-label classification tasks. Single-label classification distinguishes between garbage and non-garbage images, while multi-label classification identifies distinct garbage categories within single or multiple images. The performance of GCDN-Net is rigorously evaluated and compared against state-of-the-art waste classification methods. Results demonstrate GCDN-Net's excellence, achieving 95.77% accuracy, 95.78% precision, 95.77% recall, 95.77% F1-score, and 95.54% specificity when classifying waste images, outperforming existing models in single-label classification. In multi-label classification, GCDN-Net attains an overall Mean Average Precision (mAP) of 0.69 and an F1-score of 75.01%. The reliability of network performance is affirmed through saliency map-based visualization generated by Score-CAM (class activation mapping). In conclusion, deep learning-based models exhibit efficacy in categorizing diverse waste types, paving the way for automated waste sorting and recycling systems that can mitigate costs and processing times.</description><subject>automation</subject><subject>data collection</subject><subject>Garbage</subject><subject>Machine Learning</subject><subject>municipal solid waste</subject><subject>Neural Networks, Computer</subject><subject>population growth</subject><subject>Reproducibility of Results</subject><subject>urbanization</subject><subject>Waste Management</subject><issn>0956-053X</issn><issn>1879-2456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtOwzAQRS0EouXxBwh5ySbBYzuOww4VKEiobACxs2x3glryKHYixN9jVGDL6m7OvTM6hJwAy4GBOl_nHza2tss54yIHnjOQO2QKuqwyLgu1S6asKlTGCvEyIQcxrlkiNLB9MhEaQChVTcnzfHa1yBY4XNC5Dc6-IvWNjXFVrzDQJeKGdjgG26QYPvrwRus-0ID-M2GuQTqmUkfTKwPS9E0aaLEbjshebZuIxz95SJ5urh9nt9n9w_xudnmfeSHZkCnuoCytLpxjutCeOe9lrdTSV77EZelQg0RkJXNaaSsFF1orxUHVoCsmxSE52-5uQv8-YhxMu4oem8Z22I_RCCgEaMW1-hflaQ8KKXmVULlFfehjDFibTVi1NnwaYOZbvlmbrXzzLd8AN0ltqp3-XBhdi8u_0q9t8QWUYYEa</recordid><startdate>20240215</startdate><enddate>20240215</enddate><creator>Hossen, Md Mosarrof</creator><creator>Ashraf, Azad</creator><creator>Hasan, Mazhar</creator><creator>Majid, Molla E</creator><creator>Nashbat, Mohammad</creator><creator>Kashem, Saad Bin Abul</creator><creator>Kunju, Ali K Ansaruddin</creator><creator>Khandakar, Amith</creator><creator>Mahmud, Sakib</creator><creator>Chowdhury, Muhammad E H</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0009-0007-2372-5791</orcidid><orcidid>https://orcid.org/0000-0002-4599-2192</orcidid></search><sort><creationdate>20240215</creationdate><title>GCDN-Net: Garbage classifier deep neural network for recyclable urban waste management</title><author>Hossen, Md Mosarrof ; Ashraf, Azad ; Hasan, Mazhar ; Majid, Molla E ; Nashbat, Mohammad ; Kashem, Saad Bin Abul ; Kunju, Ali K Ansaruddin ; Khandakar, Amith ; Mahmud, Sakib ; Chowdhury, Muhammad E H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-62b177a85bb0858c0bcc4f66dc9c7ed7be814ee070b868a43238866216f189043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>automation</topic><topic>data collection</topic><topic>Garbage</topic><topic>Machine Learning</topic><topic>municipal solid waste</topic><topic>Neural Networks, Computer</topic><topic>population growth</topic><topic>Reproducibility of Results</topic><topic>urbanization</topic><topic>Waste Management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hossen, Md Mosarrof</creatorcontrib><creatorcontrib>Ashraf, Azad</creatorcontrib><creatorcontrib>Hasan, Mazhar</creatorcontrib><creatorcontrib>Majid, Molla E</creatorcontrib><creatorcontrib>Nashbat, Mohammad</creatorcontrib><creatorcontrib>Kashem, Saad Bin Abul</creatorcontrib><creatorcontrib>Kunju, Ali K Ansaruddin</creatorcontrib><creatorcontrib>Khandakar, Amith</creatorcontrib><creatorcontrib>Mahmud, Sakib</creatorcontrib><creatorcontrib>Chowdhury, Muhammad E H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Waste management (Elmsford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hossen, Md Mosarrof</au><au>Ashraf, Azad</au><au>Hasan, Mazhar</au><au>Majid, Molla E</au><au>Nashbat, Mohammad</au><au>Kashem, Saad Bin Abul</au><au>Kunju, Ali K Ansaruddin</au><au>Khandakar, Amith</au><au>Mahmud, Sakib</au><au>Chowdhury, Muhammad E H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GCDN-Net: Garbage classifier deep neural network for recyclable urban waste management</atitle><jtitle>Waste management (Elmsford)</jtitle><addtitle>Waste Manag</addtitle><date>2024-02-15</date><risdate>2024</risdate><volume>174</volume><spage>439</spage><epage>450</epage><pages>439-450</pages><issn>0956-053X</issn><eissn>1879-2456</eissn><abstract>The escalating waste volume due to urbanization and population growth has underscored the need for advanced waste sorting and recycling methods to ensure sustainable waste management. Deep learning models, adept at image recognition tasks, offer potential solutions for waste sorting applications. These models, trained on extensive waste image datasets, possess the ability to discern unique features of diverse waste types. Automating waste sorting hinges on robust deep learning models capable of accurately categorizing a wide range of waste types. In this study, a multi-stage machine learning approach is proposed to classify different waste categories using the "Garbage In, Garbage Out" (GIGO) dataset of 25,000 images. The novel Garbage Classifier Deep Neural Network (GCDN-Net) is introduced as a comprehensive solution, adept in both single-label and multi-label classification tasks. Single-label classification distinguishes between garbage and non-garbage images, while multi-label classification identifies distinct garbage categories within single or multiple images. The performance of GCDN-Net is rigorously evaluated and compared against state-of-the-art waste classification methods. Results demonstrate GCDN-Net's excellence, achieving 95.77% accuracy, 95.78% precision, 95.77% recall, 95.77% F1-score, and 95.54% specificity when classifying waste images, outperforming existing models in single-label classification. In multi-label classification, GCDN-Net attains an overall Mean Average Precision (mAP) of 0.69 and an F1-score of 75.01%. The reliability of network performance is affirmed through saliency map-based visualization generated by Score-CAM (class activation mapping). In conclusion, deep learning-based models exhibit efficacy in categorizing diverse waste types, paving the way for automated waste sorting and recycling systems that can mitigate costs and processing times.</abstract><cop>United States</cop><pmid>38113669</pmid><doi>10.1016/j.wasman.2023.12.014</doi><tpages>12</tpages><orcidid>https://orcid.org/0009-0007-2372-5791</orcidid><orcidid>https://orcid.org/0000-0002-4599-2192</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0956-053X
ispartof Waste management (Elmsford), 2024-02, Vol.174, p.439-450
issn 0956-053X
1879-2456
language eng
recordid cdi_proquest_miscellaneous_2904154429
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects automation
data collection
Garbage
Machine Learning
municipal solid waste
Neural Networks, Computer
population growth
Reproducibility of Results
urbanization
Waste Management
title GCDN-Net: Garbage classifier deep neural network for recyclable urban waste management
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A27%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GCDN-Net:%20Garbage%20classifier%20deep%20neural%20network%20for%20recyclable%20urban%20waste%20management&rft.jtitle=Waste%20management%20(Elmsford)&rft.au=Hossen,%20Md%20Mosarrof&rft.date=2024-02-15&rft.volume=174&rft.spage=439&rft.epage=450&rft.pages=439-450&rft.issn=0956-053X&rft.eissn=1879-2456&rft_id=info:doi/10.1016/j.wasman.2023.12.014&rft_dat=%3Cproquest_cross%3E3153186286%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904154429&rft_id=info:pmid/38113669&rfr_iscdi=true