Computing thickness of irregularly-shaped thin walls using a locally semi-implicit scheme with extrapolation to solve the Laplace equation: Application to the right ventricle

Cardiac Magnetic Resonance (CMR) Imaging is currently considered the gold standard imaging modality in cardiology. However, it is accompanied by a tradeoff between spatial resolution and acquisition time. Providing accurate measures of thin walls relative to the image resolution may prove challengin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2024-02, Vol.169, p.107855, Article 107855
Hauptverfasser: Merino-Caviedes, Susana, Martín-Fernández, Marcos, Pérez Rodríguez, María Teresa, Martín-Fernández, Miguel Ángel, Filgueiras-Rama, David, Simmross-Wattenberg, Federico, Alberola-López, Carlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 107855
container_title Computers in biology and medicine
container_volume 169
creator Merino-Caviedes, Susana
Martín-Fernández, Marcos
Pérez Rodríguez, María Teresa
Martín-Fernández, Miguel Ángel
Filgueiras-Rama, David
Simmross-Wattenberg, Federico
Alberola-López, Carlos
description Cardiac Magnetic Resonance (CMR) Imaging is currently considered the gold standard imaging modality in cardiology. However, it is accompanied by a tradeoff between spatial resolution and acquisition time. Providing accurate measures of thin walls relative to the image resolution may prove challenging. One such anatomical structure is the cardiac right ventricle. Methods for measuring thickness of wall-like anatomical structures often rely on the Laplace equation to provide point-to-point correspondences between both boundaries. This work presents limex, a novel method to solve the Laplace equation using ghost nodes and providing extrapolated values, which is tested on three different datasets: a mathematical phantom, a set of biventricular segmentations from CMR images of ten pigs and the database used at the RV Segmentation Challenge held at MICCAI’12. Thickness measurements using the proposed methodology are more accurate than state-of-the-art methods, especially with the coarsest image resolutions, yielding mean L1 norms of the error between 43.28% and 86.52% lower than the second-best methods on the different test datasets. It is also computationally affordable. Limex has outperformed other state-of-the-art methods in classifying RV myocardial segments by their thickness. [Display omitted] •Estimated thickness was significantly more precise than other methods.•Limex detects thin myocardial segments with high sensitivity.•Limex is free from instabilities that affect other ghost node methods.•Its computational cost and memory requirements are similar to the explicit method.
doi_str_mv 10.1016/j.compbiomed.2023.107855
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2904153946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482523013203</els_id><sourcerecordid>2920620147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-8e4c0701bd6b0f0af8da935e3568e2d0e021a3a310ea3eb9fd98512ecb9fb40a3</originalsourceid><addsrcrecordid>eNqFkUuP0zAUhS0EYsrAX0CW2LBJuY7zcNgNFS-pEhtYW45z07g4ccZ2OvRP8Rtx6AxIbFj5cb5zruVDCGWwZcCqN8etduPcGjdit80h5-m6FmX5iGyYqJsMSl48JhsABlkh8vKKPAvhCAAFcHhKrrhgjFeCbcjPXQpaopkONA5Gf58wBOp6arzHw2KVt-csDGrGbtUneqesDXQJq0FR63Q6n2nA0WRmnK3RJtKgBxyR3pk4UPwRvZqdVdG4iUZHg7MnTFlI92q2SiPF2-W3-pbezGvCH3SFvDkMkZ5wit5oi8_Jk17ZgC_u12vy7cP7r7tP2f7Lx8-7m32meVHHTGChoQbWdlULPahedKrhJfKyEph3gJAzxRVngIpj2_RdI0qWo07btgDFr8nrS-7s3e2CIcrRBI3WqgndEmTeQMFK3hRVQl_9gx7d4qf0ukTlUOXAijpR4kJp70Lw2MvZm1H5s2Qg107lUf7tVK6dykunyfryfsDSrtqD8aHEBLy7AJh-5GTQy6ANTho741FH2Tnz_ym_APvuvE8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920620147</pqid></control><display><type>article</type><title>Computing thickness of irregularly-shaped thin walls using a locally semi-implicit scheme with extrapolation to solve the Laplace equation: Application to the right ventricle</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Merino-Caviedes, Susana ; Martín-Fernández, Marcos ; Pérez Rodríguez, María Teresa ; Martín-Fernández, Miguel Ángel ; Filgueiras-Rama, David ; Simmross-Wattenberg, Federico ; Alberola-López, Carlos</creator><creatorcontrib>Merino-Caviedes, Susana ; Martín-Fernández, Marcos ; Pérez Rodríguez, María Teresa ; Martín-Fernández, Miguel Ángel ; Filgueiras-Rama, David ; Simmross-Wattenberg, Federico ; Alberola-López, Carlos</creatorcontrib><description>Cardiac Magnetic Resonance (CMR) Imaging is currently considered the gold standard imaging modality in cardiology. However, it is accompanied by a tradeoff between spatial resolution and acquisition time. Providing accurate measures of thin walls relative to the image resolution may prove challenging. One such anatomical structure is the cardiac right ventricle. Methods for measuring thickness of wall-like anatomical structures often rely on the Laplace equation to provide point-to-point correspondences between both boundaries. This work presents limex, a novel method to solve the Laplace equation using ghost nodes and providing extrapolated values, which is tested on three different datasets: a mathematical phantom, a set of biventricular segmentations from CMR images of ten pigs and the database used at the RV Segmentation Challenge held at MICCAI’12. Thickness measurements using the proposed methodology are more accurate than state-of-the-art methods, especially with the coarsest image resolutions, yielding mean L1 norms of the error between 43.28% and 86.52% lower than the second-best methods on the different test datasets. It is also computationally affordable. Limex has outperformed other state-of-the-art methods in classifying RV myocardial segments by their thickness. [Display omitted] •Estimated thickness was significantly more precise than other methods.•Limex detects thin myocardial segments with high sensitivity.•Limex is free from instabilities that affect other ghost node methods.•Its computational cost and memory requirements are similar to the explicit method.</description><identifier>ISSN: 0010-4825</identifier><identifier>ISSN: 1879-0534</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2023.107855</identifier><identifier>PMID: 38113681</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Animals ; Biology ; Boundary conditions ; Cardiac magnetic resonance ; Cardiology ; Cardiomyopathy ; COVID-19 ; Datasets ; Ghost node methods ; Heart ; Heart Ventricles ; Image acquisition ; Image processing ; Image resolution ; Ischemia ; Laplace equation ; Magnetic resonance ; Magnetic Resonance Imaging ; Magnetic Resonance Imaging, Cine - methods ; Measurement methods ; Methods ; Myocardium ; Partial differential equations ; Right ventricle ; Scars ; Spatial discrimination ; Spatial resolution ; Swine ; Thickness measurement ; Thin walls ; Ventricle ; Wall thickness</subject><ispartof>Computers in biology and medicine, 2024-02, Vol.169, p.107855, Article 107855</ispartof><rights>2023 Elsevier Ltd</rights><rights>Copyright © 2023 Elsevier Ltd. All rights reserved.</rights><rights>2023. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c347t-8e4c0701bd6b0f0af8da935e3568e2d0e021a3a310ea3eb9fd98512ecb9fb40a3</cites><orcidid>0000-0003-3684-0055 ; 0000-0002-6313-9443 ; 0000-0001-9342-9989 ; 0000-0002-4689-9766 ; 0000-0001-9534-1016 ; 0000-0001-5909-2454</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010482523013203$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38113681$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Merino-Caviedes, Susana</creatorcontrib><creatorcontrib>Martín-Fernández, Marcos</creatorcontrib><creatorcontrib>Pérez Rodríguez, María Teresa</creatorcontrib><creatorcontrib>Martín-Fernández, Miguel Ángel</creatorcontrib><creatorcontrib>Filgueiras-Rama, David</creatorcontrib><creatorcontrib>Simmross-Wattenberg, Federico</creatorcontrib><creatorcontrib>Alberola-López, Carlos</creatorcontrib><title>Computing thickness of irregularly-shaped thin walls using a locally semi-implicit scheme with extrapolation to solve the Laplace equation: Application to the right ventricle</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Cardiac Magnetic Resonance (CMR) Imaging is currently considered the gold standard imaging modality in cardiology. However, it is accompanied by a tradeoff between spatial resolution and acquisition time. Providing accurate measures of thin walls relative to the image resolution may prove challenging. One such anatomical structure is the cardiac right ventricle. Methods for measuring thickness of wall-like anatomical structures often rely on the Laplace equation to provide point-to-point correspondences between both boundaries. This work presents limex, a novel method to solve the Laplace equation using ghost nodes and providing extrapolated values, which is tested on three different datasets: a mathematical phantom, a set of biventricular segmentations from CMR images of ten pigs and the database used at the RV Segmentation Challenge held at MICCAI’12. Thickness measurements using the proposed methodology are more accurate than state-of-the-art methods, especially with the coarsest image resolutions, yielding mean L1 norms of the error between 43.28% and 86.52% lower than the second-best methods on the different test datasets. It is also computationally affordable. Limex has outperformed other state-of-the-art methods in classifying RV myocardial segments by their thickness. [Display omitted] •Estimated thickness was significantly more precise than other methods.•Limex detects thin myocardial segments with high sensitivity.•Limex is free from instabilities that affect other ghost node methods.•Its computational cost and memory requirements are similar to the explicit method.</description><subject>Animals</subject><subject>Biology</subject><subject>Boundary conditions</subject><subject>Cardiac magnetic resonance</subject><subject>Cardiology</subject><subject>Cardiomyopathy</subject><subject>COVID-19</subject><subject>Datasets</subject><subject>Ghost node methods</subject><subject>Heart</subject><subject>Heart Ventricles</subject><subject>Image acquisition</subject><subject>Image processing</subject><subject>Image resolution</subject><subject>Ischemia</subject><subject>Laplace equation</subject><subject>Magnetic resonance</subject><subject>Magnetic Resonance Imaging</subject><subject>Magnetic Resonance Imaging, Cine - methods</subject><subject>Measurement methods</subject><subject>Methods</subject><subject>Myocardium</subject><subject>Partial differential equations</subject><subject>Right ventricle</subject><subject>Scars</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Swine</subject><subject>Thickness measurement</subject><subject>Thin walls</subject><subject>Ventricle</subject><subject>Wall thickness</subject><issn>0010-4825</issn><issn>1879-0534</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUuP0zAUhS0EYsrAX0CW2LBJuY7zcNgNFS-pEhtYW45z07g4ccZ2OvRP8Rtx6AxIbFj5cb5zruVDCGWwZcCqN8etduPcGjdit80h5-m6FmX5iGyYqJsMSl48JhsABlkh8vKKPAvhCAAFcHhKrrhgjFeCbcjPXQpaopkONA5Gf58wBOp6arzHw2KVt-csDGrGbtUneqesDXQJq0FR63Q6n2nA0WRmnK3RJtKgBxyR3pk4UPwRvZqdVdG4iUZHg7MnTFlI92q2SiPF2-W3-pbezGvCH3SFvDkMkZ5wit5oi8_Jk17ZgC_u12vy7cP7r7tP2f7Lx8-7m32meVHHTGChoQbWdlULPahedKrhJfKyEph3gJAzxRVngIpj2_RdI0qWo07btgDFr8nrS-7s3e2CIcrRBI3WqgndEmTeQMFK3hRVQl_9gx7d4qf0ukTlUOXAijpR4kJp70Lw2MvZm1H5s2Qg107lUf7tVK6dykunyfryfsDSrtqD8aHEBLy7AJh-5GTQy6ANTho741FH2Tnz_ym_APvuvE8</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Merino-Caviedes, Susana</creator><creator>Martín-Fernández, Marcos</creator><creator>Pérez Rodríguez, María Teresa</creator><creator>Martín-Fernández, Miguel Ángel</creator><creator>Filgueiras-Rama, David</creator><creator>Simmross-Wattenberg, Federico</creator><creator>Alberola-López, Carlos</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3684-0055</orcidid><orcidid>https://orcid.org/0000-0002-6313-9443</orcidid><orcidid>https://orcid.org/0000-0001-9342-9989</orcidid><orcidid>https://orcid.org/0000-0002-4689-9766</orcidid><orcidid>https://orcid.org/0000-0001-9534-1016</orcidid><orcidid>https://orcid.org/0000-0001-5909-2454</orcidid></search><sort><creationdate>202402</creationdate><title>Computing thickness of irregularly-shaped thin walls using a locally semi-implicit scheme with extrapolation to solve the Laplace equation: Application to the right ventricle</title><author>Merino-Caviedes, Susana ; Martín-Fernández, Marcos ; Pérez Rodríguez, María Teresa ; Martín-Fernández, Miguel Ángel ; Filgueiras-Rama, David ; Simmross-Wattenberg, Federico ; Alberola-López, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-8e4c0701bd6b0f0af8da935e3568e2d0e021a3a310ea3eb9fd98512ecb9fb40a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Biology</topic><topic>Boundary conditions</topic><topic>Cardiac magnetic resonance</topic><topic>Cardiology</topic><topic>Cardiomyopathy</topic><topic>COVID-19</topic><topic>Datasets</topic><topic>Ghost node methods</topic><topic>Heart</topic><topic>Heart Ventricles</topic><topic>Image acquisition</topic><topic>Image processing</topic><topic>Image resolution</topic><topic>Ischemia</topic><topic>Laplace equation</topic><topic>Magnetic resonance</topic><topic>Magnetic Resonance Imaging</topic><topic>Magnetic Resonance Imaging, Cine - methods</topic><topic>Measurement methods</topic><topic>Methods</topic><topic>Myocardium</topic><topic>Partial differential equations</topic><topic>Right ventricle</topic><topic>Scars</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Swine</topic><topic>Thickness measurement</topic><topic>Thin walls</topic><topic>Ventricle</topic><topic>Wall thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merino-Caviedes, Susana</creatorcontrib><creatorcontrib>Martín-Fernández, Marcos</creatorcontrib><creatorcontrib>Pérez Rodríguez, María Teresa</creatorcontrib><creatorcontrib>Martín-Fernández, Miguel Ángel</creatorcontrib><creatorcontrib>Filgueiras-Rama, David</creatorcontrib><creatorcontrib>Simmross-Wattenberg, Federico</creatorcontrib><creatorcontrib>Alberola-López, Carlos</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merino-Caviedes, Susana</au><au>Martín-Fernández, Marcos</au><au>Pérez Rodríguez, María Teresa</au><au>Martín-Fernández, Miguel Ángel</au><au>Filgueiras-Rama, David</au><au>Simmross-Wattenberg, Federico</au><au>Alberola-López, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computing thickness of irregularly-shaped thin walls using a locally semi-implicit scheme with extrapolation to solve the Laplace equation: Application to the right ventricle</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2024-02</date><risdate>2024</risdate><volume>169</volume><spage>107855</spage><pages>107855-</pages><artnum>107855</artnum><issn>0010-4825</issn><issn>1879-0534</issn><eissn>1879-0534</eissn><abstract>Cardiac Magnetic Resonance (CMR) Imaging is currently considered the gold standard imaging modality in cardiology. However, it is accompanied by a tradeoff between spatial resolution and acquisition time. Providing accurate measures of thin walls relative to the image resolution may prove challenging. One such anatomical structure is the cardiac right ventricle. Methods for measuring thickness of wall-like anatomical structures often rely on the Laplace equation to provide point-to-point correspondences between both boundaries. This work presents limex, a novel method to solve the Laplace equation using ghost nodes and providing extrapolated values, which is tested on three different datasets: a mathematical phantom, a set of biventricular segmentations from CMR images of ten pigs and the database used at the RV Segmentation Challenge held at MICCAI’12. Thickness measurements using the proposed methodology are more accurate than state-of-the-art methods, especially with the coarsest image resolutions, yielding mean L1 norms of the error between 43.28% and 86.52% lower than the second-best methods on the different test datasets. It is also computationally affordable. Limex has outperformed other state-of-the-art methods in classifying RV myocardial segments by their thickness. [Display omitted] •Estimated thickness was significantly more precise than other methods.•Limex detects thin myocardial segments with high sensitivity.•Limex is free from instabilities that affect other ghost node methods.•Its computational cost and memory requirements are similar to the explicit method.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>38113681</pmid><doi>10.1016/j.compbiomed.2023.107855</doi><orcidid>https://orcid.org/0000-0003-3684-0055</orcidid><orcidid>https://orcid.org/0000-0002-6313-9443</orcidid><orcidid>https://orcid.org/0000-0001-9342-9989</orcidid><orcidid>https://orcid.org/0000-0002-4689-9766</orcidid><orcidid>https://orcid.org/0000-0001-9534-1016</orcidid><orcidid>https://orcid.org/0000-0001-5909-2454</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2024-02, Vol.169, p.107855, Article 107855
issn 0010-4825
1879-0534
1879-0534
language eng
recordid cdi_proquest_miscellaneous_2904153946
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Animals
Biology
Boundary conditions
Cardiac magnetic resonance
Cardiology
Cardiomyopathy
COVID-19
Datasets
Ghost node methods
Heart
Heart Ventricles
Image acquisition
Image processing
Image resolution
Ischemia
Laplace equation
Magnetic resonance
Magnetic Resonance Imaging
Magnetic Resonance Imaging, Cine - methods
Measurement methods
Methods
Myocardium
Partial differential equations
Right ventricle
Scars
Spatial discrimination
Spatial resolution
Swine
Thickness measurement
Thin walls
Ventricle
Wall thickness
title Computing thickness of irregularly-shaped thin walls using a locally semi-implicit scheme with extrapolation to solve the Laplace equation: Application to the right ventricle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T02%3A15%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computing%20thickness%20of%20irregularly-shaped%20thin%20walls%20using%20a%20locally%20semi-implicit%20scheme%20with%20extrapolation%20to%20solve%20the%20Laplace%20equation:%20Application%20to%20the%20right%20ventricle&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Merino-Caviedes,%20Susana&rft.date=2024-02&rft.volume=169&rft.spage=107855&rft.pages=107855-&rft.artnum=107855&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2023.107855&rft_dat=%3Cproquest_cross%3E2920620147%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920620147&rft_id=info:pmid/38113681&rft_els_id=S0010482523013203&rfr_iscdi=true