Direct Synthesis of Polyimide Curly Nanofibrous Aerogels for High‐Performance Thermal Insulation Under Extreme Temperature

Maintaining human body temperature is one of the basic needs for living, which requires high‐performance thermal insulation materials to prevent heat exchange with external environment. However, the most widely used fibrous thermal insulation materials always suffer from the heavy weight, weak mecha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-03, Vol.36 (13), p.e2313444-n/a
Hauptverfasser: Wang, Sai, Ding, Ruida, Liang, Guoqiang, Zhang, Wei, Yang, Fengjin, Tian, Yucheng, Yu, Jianyong, Zhang, Shichao, Ding, Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 13
container_start_page e2313444
container_title Advanced materials (Weinheim)
container_volume 36
creator Wang, Sai
Ding, Ruida
Liang, Guoqiang
Zhang, Wei
Yang, Fengjin
Tian, Yucheng
Yu, Jianyong
Zhang, Shichao
Ding, Bin
description Maintaining human body temperature is one of the basic needs for living, which requires high‐performance thermal insulation materials to prevent heat exchange with external environment. However, the most widely used fibrous thermal insulation materials always suffer from the heavy weight, weak mechanical property, and moderate capacity to suppress heat transfer, resulting in limited personal cold and thermal protection performance. Here, an ultralight, mechanically robust, and thermally insulating polyimide (PI) aerogel is directly synthesized via constructing 3D interlocked curly nanofibrous networks during electrospinning. Controlling the solution/water molecule interaction enables the rapid phase inversion of charged jets, while the multiple jets are ejected by regulating charge density of the fluids, thus synergistically allowing numerous curly nanofibers to interlock and cross‐link with each other to form porous aerogel structure. The resulted PI aerogel integrates the ultralight property with density of 2.4 mg cm−3, extreme temperature tolerance (mechanical robustness over −196 to 300 °C), and thermal insulation performance with ultralow thermal conductivity of 22.4 mW m−1 K−1, providing an ideal candidate to keep human thermal comfort under extreme temperature. This work can provide a source of inspiration for the design and development of nanofibrous aerogels for various applications. A polyimide (PI) nanofibrous aerogel consisted of interlocked curly nanofibrous networks (crimp percentage 28.5%) is directly assembled by electrospinning. Benefiting from strong porous aerogel structure (porosity 99.8%), the PI aerogel achieves ultralight property (density 2.4 mg cm−3), mechanical robustness at extreme conditions, and ultralow thermal conductivity (22.4 mW m−1 K−1), thereby offering a promising candidate for thermal insulation under extreme temperature.
doi_str_mv 10.1002/adma.202313444
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2904153676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2904153676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3734-7a6921f2e7325d399d299a8621e20cf31a060dd64df014c0b130c82f2a0a34263</originalsourceid><addsrcrecordid>eNqFkc9u1DAQhy0EokvhyhFZ4sIly_hPnPi42hZaqUAl2rPlTcZdV0682IkgUg99BJ6RJyGrLUXiwmlmpG9-mtFHyGsGSwbA39u2s0sOXDAhpXxCFqzkrJCgy6dkAVqUhVayPiIvcr4FAK1APSdHomZMgqoX5O7EJ2wG-nXqhy1mn2l09DKGyXe-RboeU5joZ9tH5zcpjpmuMMUbDJm6mOiZv9n-uv95iWmeOts3SK-2OHeBnvd5DHbwsafXfYuJnv4YEnYzgN0Okx3GhC_JM2dDxlcP9Zhcfzi9Wp8VF18-nq9XF0UjKiGLyirNmeNYCV62QuuWa21rxRlyaJxgFhS0rZKtAyYb2DABTc0dt2CF5Eock3eH3F2K30bMg-l8bjAE2-P8k-EaJCuFqvbo23_Q2zimfr7OCAAhGVRcz9TyQDUp5pzQmV3ynU2TYWD2Xszei3n0Mi-8eYgdNx22j_gfETOgD8B3H3D6T5xZnXxa_Q3_DXAumr0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3003410729</pqid></control><display><type>article</type><title>Direct Synthesis of Polyimide Curly Nanofibrous Aerogels for High‐Performance Thermal Insulation Under Extreme Temperature</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Sai ; Ding, Ruida ; Liang, Guoqiang ; Zhang, Wei ; Yang, Fengjin ; Tian, Yucheng ; Yu, Jianyong ; Zhang, Shichao ; Ding, Bin</creator><creatorcontrib>Wang, Sai ; Ding, Ruida ; Liang, Guoqiang ; Zhang, Wei ; Yang, Fengjin ; Tian, Yucheng ; Yu, Jianyong ; Zhang, Shichao ; Ding, Bin</creatorcontrib><description>Maintaining human body temperature is one of the basic needs for living, which requires high‐performance thermal insulation materials to prevent heat exchange with external environment. However, the most widely used fibrous thermal insulation materials always suffer from the heavy weight, weak mechanical property, and moderate capacity to suppress heat transfer, resulting in limited personal cold and thermal protection performance. Here, an ultralight, mechanically robust, and thermally insulating polyimide (PI) aerogel is directly synthesized via constructing 3D interlocked curly nanofibrous networks during electrospinning. Controlling the solution/water molecule interaction enables the rapid phase inversion of charged jets, while the multiple jets are ejected by regulating charge density of the fluids, thus synergistically allowing numerous curly nanofibers to interlock and cross‐link with each other to form porous aerogel structure. The resulted PI aerogel integrates the ultralight property with density of 2.4 mg cm−3, extreme temperature tolerance (mechanical robustness over −196 to 300 °C), and thermal insulation performance with ultralow thermal conductivity of 22.4 mW m−1 K−1, providing an ideal candidate to keep human thermal comfort under extreme temperature. This work can provide a source of inspiration for the design and development of nanofibrous aerogels for various applications. A polyimide (PI) nanofibrous aerogel consisted of interlocked curly nanofibrous networks (crimp percentage 28.5%) is directly assembled by electrospinning. Benefiting from strong porous aerogel structure (porosity 99.8%), the PI aerogel achieves ultralight property (density 2.4 mg cm−3), mechanical robustness at extreme conditions, and ultralow thermal conductivity (22.4 mW m−1 K−1), thereby offering a promising candidate for thermal insulation under extreme temperature.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202313444</identifier><identifier>PMID: 38114068</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Aerogels ; Body temperature ; Charge density ; extreme temperature tolerance ; Heat exchange ; Heat transfer ; Insulation ; nanofibrous aerogels ; polyimide curly nanofibers ; Thermal comfort ; Thermal conductivity ; Thermal insulation ; Thermal protection ; ultralight</subject><ispartof>Advanced materials (Weinheim), 2024-03, Vol.36 (13), p.e2313444-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>This article is protected by copyright. All rights reserved.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3734-7a6921f2e7325d399d299a8621e20cf31a060dd64df014c0b130c82f2a0a34263</citedby><cites>FETCH-LOGICAL-c3734-7a6921f2e7325d399d299a8621e20cf31a060dd64df014c0b130c82f2a0a34263</cites><orcidid>0000-0003-1499-2154</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202313444$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202313444$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38114068$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Sai</creatorcontrib><creatorcontrib>Ding, Ruida</creatorcontrib><creatorcontrib>Liang, Guoqiang</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Yang, Fengjin</creatorcontrib><creatorcontrib>Tian, Yucheng</creatorcontrib><creatorcontrib>Yu, Jianyong</creatorcontrib><creatorcontrib>Zhang, Shichao</creatorcontrib><creatorcontrib>Ding, Bin</creatorcontrib><title>Direct Synthesis of Polyimide Curly Nanofibrous Aerogels for High‐Performance Thermal Insulation Under Extreme Temperature</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Maintaining human body temperature is one of the basic needs for living, which requires high‐performance thermal insulation materials to prevent heat exchange with external environment. However, the most widely used fibrous thermal insulation materials always suffer from the heavy weight, weak mechanical property, and moderate capacity to suppress heat transfer, resulting in limited personal cold and thermal protection performance. Here, an ultralight, mechanically robust, and thermally insulating polyimide (PI) aerogel is directly synthesized via constructing 3D interlocked curly nanofibrous networks during electrospinning. Controlling the solution/water molecule interaction enables the rapid phase inversion of charged jets, while the multiple jets are ejected by regulating charge density of the fluids, thus synergistically allowing numerous curly nanofibers to interlock and cross‐link with each other to form porous aerogel structure. The resulted PI aerogel integrates the ultralight property with density of 2.4 mg cm−3, extreme temperature tolerance (mechanical robustness over −196 to 300 °C), and thermal insulation performance with ultralow thermal conductivity of 22.4 mW m−1 K−1, providing an ideal candidate to keep human thermal comfort under extreme temperature. This work can provide a source of inspiration for the design and development of nanofibrous aerogels for various applications. A polyimide (PI) nanofibrous aerogel consisted of interlocked curly nanofibrous networks (crimp percentage 28.5%) is directly assembled by electrospinning. Benefiting from strong porous aerogel structure (porosity 99.8%), the PI aerogel achieves ultralight property (density 2.4 mg cm−3), mechanical robustness at extreme conditions, and ultralow thermal conductivity (22.4 mW m−1 K−1), thereby offering a promising candidate for thermal insulation under extreme temperature.</description><subject>Aerogels</subject><subject>Body temperature</subject><subject>Charge density</subject><subject>extreme temperature tolerance</subject><subject>Heat exchange</subject><subject>Heat transfer</subject><subject>Insulation</subject><subject>nanofibrous aerogels</subject><subject>polyimide curly nanofibers</subject><subject>Thermal comfort</subject><subject>Thermal conductivity</subject><subject>Thermal insulation</subject><subject>Thermal protection</subject><subject>ultralight</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc9u1DAQhy0EokvhyhFZ4sIly_hPnPi42hZaqUAl2rPlTcZdV0682IkgUg99BJ6RJyGrLUXiwmlmpG9-mtFHyGsGSwbA39u2s0sOXDAhpXxCFqzkrJCgy6dkAVqUhVayPiIvcr4FAK1APSdHomZMgqoX5O7EJ2wG-nXqhy1mn2l09DKGyXe-RboeU5joZ9tH5zcpjpmuMMUbDJm6mOiZv9n-uv95iWmeOts3SK-2OHeBnvd5DHbwsafXfYuJnv4YEnYzgN0Okx3GhC_JM2dDxlcP9Zhcfzi9Wp8VF18-nq9XF0UjKiGLyirNmeNYCV62QuuWa21rxRlyaJxgFhS0rZKtAyYb2DABTc0dt2CF5Eock3eH3F2K30bMg-l8bjAE2-P8k-EaJCuFqvbo23_Q2zimfr7OCAAhGVRcz9TyQDUp5pzQmV3ynU2TYWD2Xszei3n0Mi-8eYgdNx22j_gfETOgD8B3H3D6T5xZnXxa_Q3_DXAumr0</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Wang, Sai</creator><creator>Ding, Ruida</creator><creator>Liang, Guoqiang</creator><creator>Zhang, Wei</creator><creator>Yang, Fengjin</creator><creator>Tian, Yucheng</creator><creator>Yu, Jianyong</creator><creator>Zhang, Shichao</creator><creator>Ding, Bin</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1499-2154</orcidid></search><sort><creationdate>20240301</creationdate><title>Direct Synthesis of Polyimide Curly Nanofibrous Aerogels for High‐Performance Thermal Insulation Under Extreme Temperature</title><author>Wang, Sai ; Ding, Ruida ; Liang, Guoqiang ; Zhang, Wei ; Yang, Fengjin ; Tian, Yucheng ; Yu, Jianyong ; Zhang, Shichao ; Ding, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3734-7a6921f2e7325d399d299a8621e20cf31a060dd64df014c0b130c82f2a0a34263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerogels</topic><topic>Body temperature</topic><topic>Charge density</topic><topic>extreme temperature tolerance</topic><topic>Heat exchange</topic><topic>Heat transfer</topic><topic>Insulation</topic><topic>nanofibrous aerogels</topic><topic>polyimide curly nanofibers</topic><topic>Thermal comfort</topic><topic>Thermal conductivity</topic><topic>Thermal insulation</topic><topic>Thermal protection</topic><topic>ultralight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Sai</creatorcontrib><creatorcontrib>Ding, Ruida</creatorcontrib><creatorcontrib>Liang, Guoqiang</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Yang, Fengjin</creatorcontrib><creatorcontrib>Tian, Yucheng</creatorcontrib><creatorcontrib>Yu, Jianyong</creatorcontrib><creatorcontrib>Zhang, Shichao</creatorcontrib><creatorcontrib>Ding, Bin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Sai</au><au>Ding, Ruida</au><au>Liang, Guoqiang</au><au>Zhang, Wei</au><au>Yang, Fengjin</au><au>Tian, Yucheng</au><au>Yu, Jianyong</au><au>Zhang, Shichao</au><au>Ding, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Synthesis of Polyimide Curly Nanofibrous Aerogels for High‐Performance Thermal Insulation Under Extreme Temperature</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>36</volume><issue>13</issue><spage>e2313444</spage><epage>n/a</epage><pages>e2313444-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Maintaining human body temperature is one of the basic needs for living, which requires high‐performance thermal insulation materials to prevent heat exchange with external environment. However, the most widely used fibrous thermal insulation materials always suffer from the heavy weight, weak mechanical property, and moderate capacity to suppress heat transfer, resulting in limited personal cold and thermal protection performance. Here, an ultralight, mechanically robust, and thermally insulating polyimide (PI) aerogel is directly synthesized via constructing 3D interlocked curly nanofibrous networks during electrospinning. Controlling the solution/water molecule interaction enables the rapid phase inversion of charged jets, while the multiple jets are ejected by regulating charge density of the fluids, thus synergistically allowing numerous curly nanofibers to interlock and cross‐link with each other to form porous aerogel structure. The resulted PI aerogel integrates the ultralight property with density of 2.4 mg cm−3, extreme temperature tolerance (mechanical robustness over −196 to 300 °C), and thermal insulation performance with ultralow thermal conductivity of 22.4 mW m−1 K−1, providing an ideal candidate to keep human thermal comfort under extreme temperature. This work can provide a source of inspiration for the design and development of nanofibrous aerogels for various applications. A polyimide (PI) nanofibrous aerogel consisted of interlocked curly nanofibrous networks (crimp percentage 28.5%) is directly assembled by electrospinning. Benefiting from strong porous aerogel structure (porosity 99.8%), the PI aerogel achieves ultralight property (density 2.4 mg cm−3), mechanical robustness at extreme conditions, and ultralow thermal conductivity (22.4 mW m−1 K−1), thereby offering a promising candidate for thermal insulation under extreme temperature.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38114068</pmid><doi>10.1002/adma.202313444</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1499-2154</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-03, Vol.36 (13), p.e2313444-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2904153676
source Wiley Online Library Journals Frontfile Complete
subjects Aerogels
Body temperature
Charge density
extreme temperature tolerance
Heat exchange
Heat transfer
Insulation
nanofibrous aerogels
polyimide curly nanofibers
Thermal comfort
Thermal conductivity
Thermal insulation
Thermal protection
ultralight
title Direct Synthesis of Polyimide Curly Nanofibrous Aerogels for High‐Performance Thermal Insulation Under Extreme Temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A10%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Synthesis%20of%20Polyimide%20Curly%20Nanofibrous%20Aerogels%20for%20High%E2%80%90Performance%20Thermal%20Insulation%20Under%20Extreme%20Temperature&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Wang,%20Sai&rft.date=2024-03-01&rft.volume=36&rft.issue=13&rft.spage=e2313444&rft.epage=n/a&rft.pages=e2313444-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202313444&rft_dat=%3Cproquest_cross%3E2904153676%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3003410729&rft_id=info:pmid/38114068&rfr_iscdi=true