Direct Synthesis of Polyimide Curly Nanofibrous Aerogels for High‐Performance Thermal Insulation Under Extreme Temperature
Maintaining human body temperature is one of the basic needs for living, which requires high‐performance thermal insulation materials to prevent heat exchange with external environment. However, the most widely used fibrous thermal insulation materials always suffer from the heavy weight, weak mecha...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2024-03, Vol.36 (13), p.e2313444-n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 13 |
container_start_page | e2313444 |
container_title | Advanced materials (Weinheim) |
container_volume | 36 |
creator | Wang, Sai Ding, Ruida Liang, Guoqiang Zhang, Wei Yang, Fengjin Tian, Yucheng Yu, Jianyong Zhang, Shichao Ding, Bin |
description | Maintaining human body temperature is one of the basic needs for living, which requires high‐performance thermal insulation materials to prevent heat exchange with external environment. However, the most widely used fibrous thermal insulation materials always suffer from the heavy weight, weak mechanical property, and moderate capacity to suppress heat transfer, resulting in limited personal cold and thermal protection performance. Here, an ultralight, mechanically robust, and thermally insulating polyimide (PI) aerogel is directly synthesized via constructing 3D interlocked curly nanofibrous networks during electrospinning. Controlling the solution/water molecule interaction enables the rapid phase inversion of charged jets, while the multiple jets are ejected by regulating charge density of the fluids, thus synergistically allowing numerous curly nanofibers to interlock and cross‐link with each other to form porous aerogel structure. The resulted PI aerogel integrates the ultralight property with density of 2.4 mg cm−3, extreme temperature tolerance (mechanical robustness over −196 to 300 °C), and thermal insulation performance with ultralow thermal conductivity of 22.4 mW m−1 K−1, providing an ideal candidate to keep human thermal comfort under extreme temperature. This work can provide a source of inspiration for the design and development of nanofibrous aerogels for various applications.
A polyimide (PI) nanofibrous aerogel consisted of interlocked curly nanofibrous networks (crimp percentage 28.5%) is directly assembled by electrospinning. Benefiting from strong porous aerogel structure (porosity 99.8%), the PI aerogel achieves ultralight property (density 2.4 mg cm−3), mechanical robustness at extreme conditions, and ultralow thermal conductivity (22.4 mW m−1 K−1), thereby offering a promising candidate for thermal insulation under extreme temperature. |
doi_str_mv | 10.1002/adma.202313444 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2904153676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2904153676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3734-7a6921f2e7325d399d299a8621e20cf31a060dd64df014c0b130c82f2a0a34263</originalsourceid><addsrcrecordid>eNqFkc9u1DAQhy0EokvhyhFZ4sIly_hPnPi42hZaqUAl2rPlTcZdV0682IkgUg99BJ6RJyGrLUXiwmlmpG9-mtFHyGsGSwbA39u2s0sOXDAhpXxCFqzkrJCgy6dkAVqUhVayPiIvcr4FAK1APSdHomZMgqoX5O7EJ2wG-nXqhy1mn2l09DKGyXe-RboeU5joZ9tH5zcpjpmuMMUbDJm6mOiZv9n-uv95iWmeOts3SK-2OHeBnvd5DHbwsafXfYuJnv4YEnYzgN0Okx3GhC_JM2dDxlcP9Zhcfzi9Wp8VF18-nq9XF0UjKiGLyirNmeNYCV62QuuWa21rxRlyaJxgFhS0rZKtAyYb2DABTc0dt2CF5Eock3eH3F2K30bMg-l8bjAE2-P8k-EaJCuFqvbo23_Q2zimfr7OCAAhGVRcz9TyQDUp5pzQmV3ynU2TYWD2Xszei3n0Mi-8eYgdNx22j_gfETOgD8B3H3D6T5xZnXxa_Q3_DXAumr0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3003410729</pqid></control><display><type>article</type><title>Direct Synthesis of Polyimide Curly Nanofibrous Aerogels for High‐Performance Thermal Insulation Under Extreme Temperature</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Sai ; Ding, Ruida ; Liang, Guoqiang ; Zhang, Wei ; Yang, Fengjin ; Tian, Yucheng ; Yu, Jianyong ; Zhang, Shichao ; Ding, Bin</creator><creatorcontrib>Wang, Sai ; Ding, Ruida ; Liang, Guoqiang ; Zhang, Wei ; Yang, Fengjin ; Tian, Yucheng ; Yu, Jianyong ; Zhang, Shichao ; Ding, Bin</creatorcontrib><description>Maintaining human body temperature is one of the basic needs for living, which requires high‐performance thermal insulation materials to prevent heat exchange with external environment. However, the most widely used fibrous thermal insulation materials always suffer from the heavy weight, weak mechanical property, and moderate capacity to suppress heat transfer, resulting in limited personal cold and thermal protection performance. Here, an ultralight, mechanically robust, and thermally insulating polyimide (PI) aerogel is directly synthesized via constructing 3D interlocked curly nanofibrous networks during electrospinning. Controlling the solution/water molecule interaction enables the rapid phase inversion of charged jets, while the multiple jets are ejected by regulating charge density of the fluids, thus synergistically allowing numerous curly nanofibers to interlock and cross‐link with each other to form porous aerogel structure. The resulted PI aerogel integrates the ultralight property with density of 2.4 mg cm−3, extreme temperature tolerance (mechanical robustness over −196 to 300 °C), and thermal insulation performance with ultralow thermal conductivity of 22.4 mW m−1 K−1, providing an ideal candidate to keep human thermal comfort under extreme temperature. This work can provide a source of inspiration for the design and development of nanofibrous aerogels for various applications.
A polyimide (PI) nanofibrous aerogel consisted of interlocked curly nanofibrous networks (crimp percentage 28.5%) is directly assembled by electrospinning. Benefiting from strong porous aerogel structure (porosity 99.8%), the PI aerogel achieves ultralight property (density 2.4 mg cm−3), mechanical robustness at extreme conditions, and ultralow thermal conductivity (22.4 mW m−1 K−1), thereby offering a promising candidate for thermal insulation under extreme temperature.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202313444</identifier><identifier>PMID: 38114068</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Aerogels ; Body temperature ; Charge density ; extreme temperature tolerance ; Heat exchange ; Heat transfer ; Insulation ; nanofibrous aerogels ; polyimide curly nanofibers ; Thermal comfort ; Thermal conductivity ; Thermal insulation ; Thermal protection ; ultralight</subject><ispartof>Advanced materials (Weinheim), 2024-03, Vol.36 (13), p.e2313444-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>This article is protected by copyright. All rights reserved.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3734-7a6921f2e7325d399d299a8621e20cf31a060dd64df014c0b130c82f2a0a34263</citedby><cites>FETCH-LOGICAL-c3734-7a6921f2e7325d399d299a8621e20cf31a060dd64df014c0b130c82f2a0a34263</cites><orcidid>0000-0003-1499-2154</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202313444$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202313444$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38114068$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Sai</creatorcontrib><creatorcontrib>Ding, Ruida</creatorcontrib><creatorcontrib>Liang, Guoqiang</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Yang, Fengjin</creatorcontrib><creatorcontrib>Tian, Yucheng</creatorcontrib><creatorcontrib>Yu, Jianyong</creatorcontrib><creatorcontrib>Zhang, Shichao</creatorcontrib><creatorcontrib>Ding, Bin</creatorcontrib><title>Direct Synthesis of Polyimide Curly Nanofibrous Aerogels for High‐Performance Thermal Insulation Under Extreme Temperature</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Maintaining human body temperature is one of the basic needs for living, which requires high‐performance thermal insulation materials to prevent heat exchange with external environment. However, the most widely used fibrous thermal insulation materials always suffer from the heavy weight, weak mechanical property, and moderate capacity to suppress heat transfer, resulting in limited personal cold and thermal protection performance. Here, an ultralight, mechanically robust, and thermally insulating polyimide (PI) aerogel is directly synthesized via constructing 3D interlocked curly nanofibrous networks during electrospinning. Controlling the solution/water molecule interaction enables the rapid phase inversion of charged jets, while the multiple jets are ejected by regulating charge density of the fluids, thus synergistically allowing numerous curly nanofibers to interlock and cross‐link with each other to form porous aerogel structure. The resulted PI aerogel integrates the ultralight property with density of 2.4 mg cm−3, extreme temperature tolerance (mechanical robustness over −196 to 300 °C), and thermal insulation performance with ultralow thermal conductivity of 22.4 mW m−1 K−1, providing an ideal candidate to keep human thermal comfort under extreme temperature. This work can provide a source of inspiration for the design and development of nanofibrous aerogels for various applications.
A polyimide (PI) nanofibrous aerogel consisted of interlocked curly nanofibrous networks (crimp percentage 28.5%) is directly assembled by electrospinning. Benefiting from strong porous aerogel structure (porosity 99.8%), the PI aerogel achieves ultralight property (density 2.4 mg cm−3), mechanical robustness at extreme conditions, and ultralow thermal conductivity (22.4 mW m−1 K−1), thereby offering a promising candidate for thermal insulation under extreme temperature.</description><subject>Aerogels</subject><subject>Body temperature</subject><subject>Charge density</subject><subject>extreme temperature tolerance</subject><subject>Heat exchange</subject><subject>Heat transfer</subject><subject>Insulation</subject><subject>nanofibrous aerogels</subject><subject>polyimide curly nanofibers</subject><subject>Thermal comfort</subject><subject>Thermal conductivity</subject><subject>Thermal insulation</subject><subject>Thermal protection</subject><subject>ultralight</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc9u1DAQhy0EokvhyhFZ4sIly_hPnPi42hZaqUAl2rPlTcZdV0682IkgUg99BJ6RJyGrLUXiwmlmpG9-mtFHyGsGSwbA39u2s0sOXDAhpXxCFqzkrJCgy6dkAVqUhVayPiIvcr4FAK1APSdHomZMgqoX5O7EJ2wG-nXqhy1mn2l09DKGyXe-RboeU5joZ9tH5zcpjpmuMMUbDJm6mOiZv9n-uv95iWmeOts3SK-2OHeBnvd5DHbwsafXfYuJnv4YEnYzgN0Okx3GhC_JM2dDxlcP9Zhcfzi9Wp8VF18-nq9XF0UjKiGLyirNmeNYCV62QuuWa21rxRlyaJxgFhS0rZKtAyYb2DABTc0dt2CF5Eock3eH3F2K30bMg-l8bjAE2-P8k-EaJCuFqvbo23_Q2zimfr7OCAAhGVRcz9TyQDUp5pzQmV3ynU2TYWD2Xszei3n0Mi-8eYgdNx22j_gfETOgD8B3H3D6T5xZnXxa_Q3_DXAumr0</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Wang, Sai</creator><creator>Ding, Ruida</creator><creator>Liang, Guoqiang</creator><creator>Zhang, Wei</creator><creator>Yang, Fengjin</creator><creator>Tian, Yucheng</creator><creator>Yu, Jianyong</creator><creator>Zhang, Shichao</creator><creator>Ding, Bin</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1499-2154</orcidid></search><sort><creationdate>20240301</creationdate><title>Direct Synthesis of Polyimide Curly Nanofibrous Aerogels for High‐Performance Thermal Insulation Under Extreme Temperature</title><author>Wang, Sai ; Ding, Ruida ; Liang, Guoqiang ; Zhang, Wei ; Yang, Fengjin ; Tian, Yucheng ; Yu, Jianyong ; Zhang, Shichao ; Ding, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3734-7a6921f2e7325d399d299a8621e20cf31a060dd64df014c0b130c82f2a0a34263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerogels</topic><topic>Body temperature</topic><topic>Charge density</topic><topic>extreme temperature tolerance</topic><topic>Heat exchange</topic><topic>Heat transfer</topic><topic>Insulation</topic><topic>nanofibrous aerogels</topic><topic>polyimide curly nanofibers</topic><topic>Thermal comfort</topic><topic>Thermal conductivity</topic><topic>Thermal insulation</topic><topic>Thermal protection</topic><topic>ultralight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Sai</creatorcontrib><creatorcontrib>Ding, Ruida</creatorcontrib><creatorcontrib>Liang, Guoqiang</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Yang, Fengjin</creatorcontrib><creatorcontrib>Tian, Yucheng</creatorcontrib><creatorcontrib>Yu, Jianyong</creatorcontrib><creatorcontrib>Zhang, Shichao</creatorcontrib><creatorcontrib>Ding, Bin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Sai</au><au>Ding, Ruida</au><au>Liang, Guoqiang</au><au>Zhang, Wei</au><au>Yang, Fengjin</au><au>Tian, Yucheng</au><au>Yu, Jianyong</au><au>Zhang, Shichao</au><au>Ding, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Synthesis of Polyimide Curly Nanofibrous Aerogels for High‐Performance Thermal Insulation Under Extreme Temperature</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>36</volume><issue>13</issue><spage>e2313444</spage><epage>n/a</epage><pages>e2313444-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Maintaining human body temperature is one of the basic needs for living, which requires high‐performance thermal insulation materials to prevent heat exchange with external environment. However, the most widely used fibrous thermal insulation materials always suffer from the heavy weight, weak mechanical property, and moderate capacity to suppress heat transfer, resulting in limited personal cold and thermal protection performance. Here, an ultralight, mechanically robust, and thermally insulating polyimide (PI) aerogel is directly synthesized via constructing 3D interlocked curly nanofibrous networks during electrospinning. Controlling the solution/water molecule interaction enables the rapid phase inversion of charged jets, while the multiple jets are ejected by regulating charge density of the fluids, thus synergistically allowing numerous curly nanofibers to interlock and cross‐link with each other to form porous aerogel structure. The resulted PI aerogel integrates the ultralight property with density of 2.4 mg cm−3, extreme temperature tolerance (mechanical robustness over −196 to 300 °C), and thermal insulation performance with ultralow thermal conductivity of 22.4 mW m−1 K−1, providing an ideal candidate to keep human thermal comfort under extreme temperature. This work can provide a source of inspiration for the design and development of nanofibrous aerogels for various applications.
A polyimide (PI) nanofibrous aerogel consisted of interlocked curly nanofibrous networks (crimp percentage 28.5%) is directly assembled by electrospinning. Benefiting from strong porous aerogel structure (porosity 99.8%), the PI aerogel achieves ultralight property (density 2.4 mg cm−3), mechanical robustness at extreme conditions, and ultralow thermal conductivity (22.4 mW m−1 K−1), thereby offering a promising candidate for thermal insulation under extreme temperature.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38114068</pmid><doi>10.1002/adma.202313444</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1499-2154</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2024-03, Vol.36 (13), p.e2313444-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2904153676 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Aerogels Body temperature Charge density extreme temperature tolerance Heat exchange Heat transfer Insulation nanofibrous aerogels polyimide curly nanofibers Thermal comfort Thermal conductivity Thermal insulation Thermal protection ultralight |
title | Direct Synthesis of Polyimide Curly Nanofibrous Aerogels for High‐Performance Thermal Insulation Under Extreme Temperature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A10%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Synthesis%20of%20Polyimide%20Curly%20Nanofibrous%20Aerogels%20for%20High%E2%80%90Performance%20Thermal%20Insulation%20Under%20Extreme%20Temperature&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Wang,%20Sai&rft.date=2024-03-01&rft.volume=36&rft.issue=13&rft.spage=e2313444&rft.epage=n/a&rft.pages=e2313444-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202313444&rft_dat=%3Cproquest_cross%3E2904153676%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3003410729&rft_id=info:pmid/38114068&rfr_iscdi=true |