Sharp interface Cartesian grid method I: An easily implemented technique for 3D moving boundary computations

A Cartesian grid method is developed for the simulation of incompressible flows around stationary and moving three-dimensional immersed boundaries. The embedded boundaries are represented using level-sets and treated in a sharp manner without the use of source terms to represent boundary effects. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2005-11, Vol.210 (1), p.1-31
Hauptverfasser: Marella, S., Krishnan, S., Liu, H., Udaykumar, H.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 31
container_issue 1
container_start_page 1
container_title Journal of computational physics
container_volume 210
creator Marella, S.
Krishnan, S.
Liu, H.
Udaykumar, H.S.
description A Cartesian grid method is developed for the simulation of incompressible flows around stationary and moving three-dimensional immersed boundaries. The embedded boundaries are represented using level-sets and treated in a sharp manner without the use of source terms to represent boundary effects. The narrow-band distance function field in the level-set boundary representation facilitates implementation of the finite-difference flow solver. The resulting algorithm is implemented in a straightforward manner in three-dimensions and retains global second-order accuracy. The accuracy of the finite-difference scheme is established and shown to be comparable to finite-volume schemes that are considerably more difficult to implement. Moving boundaries are handled naturally. The pressure solver is accelerated using an algebraic multigrid technique adapted to be effective in the presence of moving embedded boundaries. Benchmarking of the method is performed against available numerical as well as experimental results.
doi_str_mv 10.1016/j.jcp.2005.03.031
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29039821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999105001956</els_id><sourcerecordid>28893101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-56dec348bda703e2cf772f36286a83158ab6fb6dcbab36fe4a8ea1a25406d8953</originalsourceid><addsrcrecordid>eNqFkc1r3DAQxU1podu0f0BvurT04o0-bFluT2HbfEAgh7RnMZbGWS225EraQP77yGygtxQG5vJ7b4b3quozo1tGmTw_bA9m2XJK2y0VZdibasNoT2veMfm22lDKWd33PXtffUjpQClVbaM21XS_h7gQ5zPGEQySHcSMyYEnD9FZMmPeB0tuvpMLTxCSm56Im5cJZywSSzKavXd_j0jGEIn4Sebw6PwDGcLRW4hPxIR5OWbILvj0sXo3wpTw08s-q_5c_vq9u65v765udhe3tWk4z3UrLRrRqMFCRwVyM3YdH4XkSoISrFUwyHGQ1gwwCDliAwqBAW8bKq3qW3FWfT35LjGU11LWs0sGpwk8hmPSvKeiV5z9H1SqFyXfAn57FWS02HVCNSvKTqiJIaWIo16im0sUBdJrV_qgS1d67UpTUWbVfHmxh2RgGiN449I_YVdkUq7cjxOHJb1Hh1En49AbtC6iydoG98qVZ8LxqeY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082173841</pqid></control><display><type>article</type><title>Sharp interface Cartesian grid method I: An easily implemented technique for 3D moving boundary computations</title><source>Access via ScienceDirect (Elsevier)</source><creator>Marella, S. ; Krishnan, S. ; Liu, H. ; Udaykumar, H.S.</creator><creatorcontrib>Marella, S. ; Krishnan, S. ; Liu, H. ; Udaykumar, H.S.</creatorcontrib><description>A Cartesian grid method is developed for the simulation of incompressible flows around stationary and moving three-dimensional immersed boundaries. The embedded boundaries are represented using level-sets and treated in a sharp manner without the use of source terms to represent boundary effects. The narrow-band distance function field in the level-set boundary representation facilitates implementation of the finite-difference flow solver. The resulting algorithm is implemented in a straightforward manner in three-dimensions and retains global second-order accuracy. The accuracy of the finite-difference scheme is established and shown to be comparable to finite-volume schemes that are considerably more difficult to implement. Moving boundaries are handled naturally. The pressure solver is accelerated using an algebraic multigrid technique adapted to be effective in the presence of moving embedded boundaries. Benchmarking of the method is performed against available numerical as well as experimental results.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2005.03.031</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Accuracy ; Boundaries ; Cartesian grid ; Computational techniques ; Exact sciences and technology ; Finite difference method ; Grid method ; Level-sets ; Mathematical analysis ; Mathematical methods in physics ; Mathematical models ; Moving boundaries ; Physics ; Sharp interface method ; Solvers ; Three dimensional</subject><ispartof>Journal of computational physics, 2005-11, Vol.210 (1), p.1-31</ispartof><rights>2005 Elsevier Inc.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-56dec348bda703e2cf772f36286a83158ab6fb6dcbab36fe4a8ea1a25406d8953</citedby><cites>FETCH-LOGICAL-c422t-56dec348bda703e2cf772f36286a83158ab6fb6dcbab36fe4a8ea1a25406d8953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2005.03.031$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17016661$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Marella, S.</creatorcontrib><creatorcontrib>Krishnan, S.</creatorcontrib><creatorcontrib>Liu, H.</creatorcontrib><creatorcontrib>Udaykumar, H.S.</creatorcontrib><title>Sharp interface Cartesian grid method I: An easily implemented technique for 3D moving boundary computations</title><title>Journal of computational physics</title><description>A Cartesian grid method is developed for the simulation of incompressible flows around stationary and moving three-dimensional immersed boundaries. The embedded boundaries are represented using level-sets and treated in a sharp manner without the use of source terms to represent boundary effects. The narrow-band distance function field in the level-set boundary representation facilitates implementation of the finite-difference flow solver. The resulting algorithm is implemented in a straightforward manner in three-dimensions and retains global second-order accuracy. The accuracy of the finite-difference scheme is established and shown to be comparable to finite-volume schemes that are considerably more difficult to implement. Moving boundaries are handled naturally. The pressure solver is accelerated using an algebraic multigrid technique adapted to be effective in the presence of moving embedded boundaries. Benchmarking of the method is performed against available numerical as well as experimental results.</description><subject>Accuracy</subject><subject>Boundaries</subject><subject>Cartesian grid</subject><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>Finite difference method</subject><subject>Grid method</subject><subject>Level-sets</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Moving boundaries</subject><subject>Physics</subject><subject>Sharp interface method</subject><subject>Solvers</subject><subject>Three dimensional</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkc1r3DAQxU1podu0f0BvurT04o0-bFluT2HbfEAgh7RnMZbGWS225EraQP77yGygtxQG5vJ7b4b3quozo1tGmTw_bA9m2XJK2y0VZdibasNoT2veMfm22lDKWd33PXtffUjpQClVbaM21XS_h7gQ5zPGEQySHcSMyYEnD9FZMmPeB0tuvpMLTxCSm56Im5cJZywSSzKavXd_j0jGEIn4Sebw6PwDGcLRW4hPxIR5OWbILvj0sXo3wpTw08s-q_5c_vq9u65v765udhe3tWk4z3UrLRrRqMFCRwVyM3YdH4XkSoISrFUwyHGQ1gwwCDliAwqBAW8bKq3qW3FWfT35LjGU11LWs0sGpwk8hmPSvKeiV5z9H1SqFyXfAn57FWS02HVCNSvKTqiJIaWIo16im0sUBdJrV_qgS1d67UpTUWbVfHmxh2RgGiN449I_YVdkUq7cjxOHJb1Hh1En49AbtC6iydoG98qVZ8LxqeY</recordid><startdate>20051120</startdate><enddate>20051120</enddate><creator>Marella, S.</creator><creator>Krishnan, S.</creator><creator>Liu, H.</creator><creator>Udaykumar, H.S.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TB</scope><scope>FR3</scope><scope>H8D</scope></search><sort><creationdate>20051120</creationdate><title>Sharp interface Cartesian grid method I: An easily implemented technique for 3D moving boundary computations</title><author>Marella, S. ; Krishnan, S. ; Liu, H. ; Udaykumar, H.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-56dec348bda703e2cf772f36286a83158ab6fb6dcbab36fe4a8ea1a25406d8953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Accuracy</topic><topic>Boundaries</topic><topic>Cartesian grid</topic><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>Finite difference method</topic><topic>Grid method</topic><topic>Level-sets</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Moving boundaries</topic><topic>Physics</topic><topic>Sharp interface method</topic><topic>Solvers</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marella, S.</creatorcontrib><creatorcontrib>Krishnan, S.</creatorcontrib><creatorcontrib>Liu, H.</creatorcontrib><creatorcontrib>Udaykumar, H.S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marella, S.</au><au>Krishnan, S.</au><au>Liu, H.</au><au>Udaykumar, H.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sharp interface Cartesian grid method I: An easily implemented technique for 3D moving boundary computations</atitle><jtitle>Journal of computational physics</jtitle><date>2005-11-20</date><risdate>2005</risdate><volume>210</volume><issue>1</issue><spage>1</spage><epage>31</epage><pages>1-31</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>A Cartesian grid method is developed for the simulation of incompressible flows around stationary and moving three-dimensional immersed boundaries. The embedded boundaries are represented using level-sets and treated in a sharp manner without the use of source terms to represent boundary effects. The narrow-band distance function field in the level-set boundary representation facilitates implementation of the finite-difference flow solver. The resulting algorithm is implemented in a straightforward manner in three-dimensions and retains global second-order accuracy. The accuracy of the finite-difference scheme is established and shown to be comparable to finite-volume schemes that are considerably more difficult to implement. Moving boundaries are handled naturally. The pressure solver is accelerated using an algebraic multigrid technique adapted to be effective in the presence of moving embedded boundaries. Benchmarking of the method is performed against available numerical as well as experimental results.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2005.03.031</doi><tpages>31</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2005-11, Vol.210 (1), p.1-31
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_29039821
source Access via ScienceDirect (Elsevier)
subjects Accuracy
Boundaries
Cartesian grid
Computational techniques
Exact sciences and technology
Finite difference method
Grid method
Level-sets
Mathematical analysis
Mathematical methods in physics
Mathematical models
Moving boundaries
Physics
Sharp interface method
Solvers
Three dimensional
title Sharp interface Cartesian grid method I: An easily implemented technique for 3D moving boundary computations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A30%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sharp%20interface%20Cartesian%20grid%20method%20I:%20An%20easily%20implemented%20technique%20for%203D%20moving%20boundary%20computations&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Marella,%20S.&rft.date=2005-11-20&rft.volume=210&rft.issue=1&rft.spage=1&rft.epage=31&rft.pages=1-31&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2005.03.031&rft_dat=%3Cproquest_cross%3E28893101%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082173841&rft_id=info:pmid/&rft_els_id=S0021999105001956&rfr_iscdi=true