Regulatory mechanism of the miR172e–LbrAP2 module during the vegetative growth phase transition in Lilium
Main conclusion It was proved for the first time that the miR172e– LbrAP2 module regulated the vegetative growth phase transition in Lilium , which provided a new approach to shorten the juvenile stage of Lilium , improved the reproduction rate, and reduced the propagation cost of Lilium commercial...
Gespeichert in:
Veröffentlicht in: | Planta 2024-01, Vol.259 (1), p.26-26, Article 26 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 26 |
---|---|
container_issue | 1 |
container_start_page | 26 |
container_title | Planta |
container_volume | 259 |
creator | Feng, Junting Wang, Yiqing Ge, Wei Zhang, Kezhong Cui, Jinteng |
description | Main conclusion
It was proved for the first time that the miR172e–
LbrAP2
module regulated the vegetative growth phase transition in
Lilium
, which provided a new approach to shorten the juvenile stage of
Lilium
, improved the reproduction rate, and reduced the propagation cost of
Lilium
commercial bulbs.
Lilium
is an ornamental bulb plant that takes at least 3 years to cultivate into commercial seed bulbs under natural conditions. The aim of this study was to shorten the
Lilium
expansion cycle. In this study, the growth cycle of lily tubers induced by low temperature of 15 °C was significantly shorter than that of tubers grown at a conventional temperature. Quantitative real-time PCR analysis showed that the expression patterns of miR172e and
LbrAP2
were negatively correlated. GUS histochemical staining confirmed that miR172e and
LbrAP2
in tobacco leaves interacted with each other after co-transformation. The shear sites of miR172e and its target gene,
LbrAP2
, upon binding, were identified by RLM 5′ RACE analysis. In addition, miR172e and
LbrAP2
showed opposite expression patterns after the transformation of
Arabidopsis
. miR172e overexpression accelerated the transition from juvenile to adult plants, whereas
LbrAP2
overexpression inhibited this process, thus indicating that miR172e negatively regulated the target gene
LbrAP2
. Upregulation of the transcription factor
LbrAP2
delayed the phase transition of plants, whereas miR172 inhibited the transcriptional translation of
LbrAP2
, thereby accelerating the phase transition. Low-temperature treatment of
Lilium
bulbs can shorten
Lilium
development, which provides a new approach to accelerating
Lilium
commercial bulb breeding and reducing breeding costs. |
doi_str_mv | 10.1007/s00425-023-04308-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2903860294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2903102118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-36b652110636796fe89409d0510fc10e4523e06807d6fda46f5c3556f147584f3</originalsourceid><addsrcrecordid>eNqFkctu1DAUhi0EokPhBVggS2y6CT2-xllWVblII1FVZW15kuMZlyQe7KSou74Db8iT4JkpILGgK1vy9_8-9kfIawbvGEB9mgEkVxVwUYEUYCrzhCyYFLziIM1TsgAoe2iEOiIvcr4BKId1_ZwcCcMYKKMX5OsVrufeTTHd0QHbjRtDHmj0dNogHcIVqzn-vP-xXKWzS06H2M090m5OYVzvkVtc4-SmcIt0neL3aUO3G5eRTsmNOUwhjjSMdBn6MA8vyTPv-oyvHtZj8uX9xfX5x2r5-cOn87Nl1QrVTJXQK614GVALXTfao2kkNB0oBr5lgFJxgaAN1J32nZPaqxJU2jNZKyO9OCYnh95tit9mzJMdQm6x792Icc5WMLXjhdaPorwBYTTwRhb07T_oTZzTWB6ypxiUkU2h-IFqU8w5obfbFAaX7iwDu7NmD9ZssWb31uwu9Oahel4N2P2J_NZUAHEA8nb385j-3v2f2l91bKC9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2903102118</pqid></control><display><type>article</type><title>Regulatory mechanism of the miR172e–LbrAP2 module during the vegetative growth phase transition in Lilium</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Feng, Junting ; Wang, Yiqing ; Ge, Wei ; Zhang, Kezhong ; Cui, Jinteng</creator><creatorcontrib>Feng, Junting ; Wang, Yiqing ; Ge, Wei ; Zhang, Kezhong ; Cui, Jinteng</creatorcontrib><description>Main conclusion
It was proved for the first time that the miR172e–
LbrAP2
module regulated the vegetative growth phase transition in
Lilium
, which provided a new approach to shorten the juvenile stage of
Lilium
, improved the reproduction rate, and reduced the propagation cost of
Lilium
commercial bulbs.
Lilium
is an ornamental bulb plant that takes at least 3 years to cultivate into commercial seed bulbs under natural conditions. The aim of this study was to shorten the
Lilium
expansion cycle. In this study, the growth cycle of lily tubers induced by low temperature of 15 °C was significantly shorter than that of tubers grown at a conventional temperature. Quantitative real-time PCR analysis showed that the expression patterns of miR172e and
LbrAP2
were negatively correlated. GUS histochemical staining confirmed that miR172e and
LbrAP2
in tobacco leaves interacted with each other after co-transformation. The shear sites of miR172e and its target gene,
LbrAP2
, upon binding, were identified by RLM 5′ RACE analysis. In addition, miR172e and
LbrAP2
showed opposite expression patterns after the transformation of
Arabidopsis
. miR172e overexpression accelerated the transition from juvenile to adult plants, whereas
LbrAP2
overexpression inhibited this process, thus indicating that miR172e negatively regulated the target gene
LbrAP2
. Upregulation of the transcription factor
LbrAP2
delayed the phase transition of plants, whereas miR172 inhibited the transcriptional translation of
LbrAP2
, thereby accelerating the phase transition. Low-temperature treatment of
Lilium
bulbs can shorten
Lilium
development, which provides a new approach to accelerating
Lilium
commercial bulb breeding and reducing breeding costs.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/s00425-023-04308-8</identifier><identifier>PMID: 38110586</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>adults ; Agriculture ; Arabidopsis ; Biomedical and Life Sciences ; Breeding ; Bulbs ; Ecology ; Flowers - genetics ; Forestry ; Gene Expression Regulation, Plant ; genes ; Genetic transformation ; juveniles ; Life Sciences ; Lilium ; Lilium - genetics ; Lilium - metabolism ; Low temperature ; Modules ; Original Article ; Ornamental plants ; phase transition ; Phase transitions ; Plant Breeding ; Plant Roots - genetics ; Plant Sciences ; Predation ; Propagation ; quantitative polymerase chain reaction ; Regulatory mechanisms (biology) ; reproduction ; temperature ; Tobacco ; transcription (genetics) ; transcription factors ; Transcription Factors - genetics ; Tubers ; vegetative growth</subject><ispartof>Planta, 2024-01, Vol.259 (1), p.26-26, Article 26</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-36b652110636796fe89409d0510fc10e4523e06807d6fda46f5c3556f147584f3</cites><orcidid>0000-0003-2575-5330</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00425-023-04308-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00425-023-04308-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38110586$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feng, Junting</creatorcontrib><creatorcontrib>Wang, Yiqing</creatorcontrib><creatorcontrib>Ge, Wei</creatorcontrib><creatorcontrib>Zhang, Kezhong</creatorcontrib><creatorcontrib>Cui, Jinteng</creatorcontrib><title>Regulatory mechanism of the miR172e–LbrAP2 module during the vegetative growth phase transition in Lilium</title><title>Planta</title><addtitle>Planta</addtitle><addtitle>Planta</addtitle><description>Main conclusion
It was proved for the first time that the miR172e–
LbrAP2
module regulated the vegetative growth phase transition in
Lilium
, which provided a new approach to shorten the juvenile stage of
Lilium
, improved the reproduction rate, and reduced the propagation cost of
Lilium
commercial bulbs.
Lilium
is an ornamental bulb plant that takes at least 3 years to cultivate into commercial seed bulbs under natural conditions. The aim of this study was to shorten the
Lilium
expansion cycle. In this study, the growth cycle of lily tubers induced by low temperature of 15 °C was significantly shorter than that of tubers grown at a conventional temperature. Quantitative real-time PCR analysis showed that the expression patterns of miR172e and
LbrAP2
were negatively correlated. GUS histochemical staining confirmed that miR172e and
LbrAP2
in tobacco leaves interacted with each other after co-transformation. The shear sites of miR172e and its target gene,
LbrAP2
, upon binding, were identified by RLM 5′ RACE analysis. In addition, miR172e and
LbrAP2
showed opposite expression patterns after the transformation of
Arabidopsis
. miR172e overexpression accelerated the transition from juvenile to adult plants, whereas
LbrAP2
overexpression inhibited this process, thus indicating that miR172e negatively regulated the target gene
LbrAP2
. Upregulation of the transcription factor
LbrAP2
delayed the phase transition of plants, whereas miR172 inhibited the transcriptional translation of
LbrAP2
, thereby accelerating the phase transition. Low-temperature treatment of
Lilium
bulbs can shorten
Lilium
development, which provides a new approach to accelerating
Lilium
commercial bulb breeding and reducing breeding costs.</description><subject>adults</subject><subject>Agriculture</subject><subject>Arabidopsis</subject><subject>Biomedical and Life Sciences</subject><subject>Breeding</subject><subject>Bulbs</subject><subject>Ecology</subject><subject>Flowers - genetics</subject><subject>Forestry</subject><subject>Gene Expression Regulation, Plant</subject><subject>genes</subject><subject>Genetic transformation</subject><subject>juveniles</subject><subject>Life Sciences</subject><subject>Lilium</subject><subject>Lilium - genetics</subject><subject>Lilium - metabolism</subject><subject>Low temperature</subject><subject>Modules</subject><subject>Original Article</subject><subject>Ornamental plants</subject><subject>phase transition</subject><subject>Phase transitions</subject><subject>Plant Breeding</subject><subject>Plant Roots - genetics</subject><subject>Plant Sciences</subject><subject>Predation</subject><subject>Propagation</subject><subject>quantitative polymerase chain reaction</subject><subject>Regulatory mechanisms (biology)</subject><subject>reproduction</subject><subject>temperature</subject><subject>Tobacco</subject><subject>transcription (genetics)</subject><subject>transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Tubers</subject><subject>vegetative growth</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkctu1DAUhi0EokPhBVggS2y6CT2-xllWVblII1FVZW15kuMZlyQe7KSou74Db8iT4JkpILGgK1vy9_8-9kfIawbvGEB9mgEkVxVwUYEUYCrzhCyYFLziIM1TsgAoe2iEOiIvcr4BKId1_ZwcCcMYKKMX5OsVrufeTTHd0QHbjRtDHmj0dNogHcIVqzn-vP-xXKWzS06H2M090m5OYVzvkVtc4-SmcIt0neL3aUO3G5eRTsmNOUwhjjSMdBn6MA8vyTPv-oyvHtZj8uX9xfX5x2r5-cOn87Nl1QrVTJXQK614GVALXTfao2kkNB0oBr5lgFJxgaAN1J32nZPaqxJU2jNZKyO9OCYnh95tit9mzJMdQm6x792Icc5WMLXjhdaPorwBYTTwRhb07T_oTZzTWB6ypxiUkU2h-IFqU8w5obfbFAaX7iwDu7NmD9ZssWb31uwu9Oahel4N2P2J_NZUAHEA8nb385j-3v2f2l91bKC9</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Feng, Junting</creator><creator>Wang, Yiqing</creator><creator>Ge, Wei</creator><creator>Zhang, Kezhong</creator><creator>Cui, Jinteng</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-2575-5330</orcidid></search><sort><creationdate>20240101</creationdate><title>Regulatory mechanism of the miR172e–LbrAP2 module during the vegetative growth phase transition in Lilium</title><author>Feng, Junting ; Wang, Yiqing ; Ge, Wei ; Zhang, Kezhong ; Cui, Jinteng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-36b652110636796fe89409d0510fc10e4523e06807d6fda46f5c3556f147584f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>adults</topic><topic>Agriculture</topic><topic>Arabidopsis</topic><topic>Biomedical and Life Sciences</topic><topic>Breeding</topic><topic>Bulbs</topic><topic>Ecology</topic><topic>Flowers - genetics</topic><topic>Forestry</topic><topic>Gene Expression Regulation, Plant</topic><topic>genes</topic><topic>Genetic transformation</topic><topic>juveniles</topic><topic>Life Sciences</topic><topic>Lilium</topic><topic>Lilium - genetics</topic><topic>Lilium - metabolism</topic><topic>Low temperature</topic><topic>Modules</topic><topic>Original Article</topic><topic>Ornamental plants</topic><topic>phase transition</topic><topic>Phase transitions</topic><topic>Plant Breeding</topic><topic>Plant Roots - genetics</topic><topic>Plant Sciences</topic><topic>Predation</topic><topic>Propagation</topic><topic>quantitative polymerase chain reaction</topic><topic>Regulatory mechanisms (biology)</topic><topic>reproduction</topic><topic>temperature</topic><topic>Tobacco</topic><topic>transcription (genetics)</topic><topic>transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Tubers</topic><topic>vegetative growth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Junting</creatorcontrib><creatorcontrib>Wang, Yiqing</creatorcontrib><creatorcontrib>Ge, Wei</creatorcontrib><creatorcontrib>Zhang, Kezhong</creatorcontrib><creatorcontrib>Cui, Jinteng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Junting</au><au>Wang, Yiqing</au><au>Ge, Wei</au><au>Zhang, Kezhong</au><au>Cui, Jinteng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulatory mechanism of the miR172e–LbrAP2 module during the vegetative growth phase transition in Lilium</atitle><jtitle>Planta</jtitle><stitle>Planta</stitle><addtitle>Planta</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>259</volume><issue>1</issue><spage>26</spage><epage>26</epage><pages>26-26</pages><artnum>26</artnum><issn>0032-0935</issn><eissn>1432-2048</eissn><abstract>Main conclusion
It was proved for the first time that the miR172e–
LbrAP2
module regulated the vegetative growth phase transition in
Lilium
, which provided a new approach to shorten the juvenile stage of
Lilium
, improved the reproduction rate, and reduced the propagation cost of
Lilium
commercial bulbs.
Lilium
is an ornamental bulb plant that takes at least 3 years to cultivate into commercial seed bulbs under natural conditions. The aim of this study was to shorten the
Lilium
expansion cycle. In this study, the growth cycle of lily tubers induced by low temperature of 15 °C was significantly shorter than that of tubers grown at a conventional temperature. Quantitative real-time PCR analysis showed that the expression patterns of miR172e and
LbrAP2
were negatively correlated. GUS histochemical staining confirmed that miR172e and
LbrAP2
in tobacco leaves interacted with each other after co-transformation. The shear sites of miR172e and its target gene,
LbrAP2
, upon binding, were identified by RLM 5′ RACE analysis. In addition, miR172e and
LbrAP2
showed opposite expression patterns after the transformation of
Arabidopsis
. miR172e overexpression accelerated the transition from juvenile to adult plants, whereas
LbrAP2
overexpression inhibited this process, thus indicating that miR172e negatively regulated the target gene
LbrAP2
. Upregulation of the transcription factor
LbrAP2
delayed the phase transition of plants, whereas miR172 inhibited the transcriptional translation of
LbrAP2
, thereby accelerating the phase transition. Low-temperature treatment of
Lilium
bulbs can shorten
Lilium
development, which provides a new approach to accelerating
Lilium
commercial bulb breeding and reducing breeding costs.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38110586</pmid><doi>10.1007/s00425-023-04308-8</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2575-5330</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0935 |
ispartof | Planta, 2024-01, Vol.259 (1), p.26-26, Article 26 |
issn | 0032-0935 1432-2048 |
language | eng |
recordid | cdi_proquest_miscellaneous_2903860294 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | adults Agriculture Arabidopsis Biomedical and Life Sciences Breeding Bulbs Ecology Flowers - genetics Forestry Gene Expression Regulation, Plant genes Genetic transformation juveniles Life Sciences Lilium Lilium - genetics Lilium - metabolism Low temperature Modules Original Article Ornamental plants phase transition Phase transitions Plant Breeding Plant Roots - genetics Plant Sciences Predation Propagation quantitative polymerase chain reaction Regulatory mechanisms (biology) reproduction temperature Tobacco transcription (genetics) transcription factors Transcription Factors - genetics Tubers vegetative growth |
title | Regulatory mechanism of the miR172e–LbrAP2 module during the vegetative growth phase transition in Lilium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A49%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulatory%20mechanism%20of%20the%20miR172e%E2%80%93LbrAP2%20module%20during%20the%20vegetative%20growth%20phase%20transition%20in%20Lilium&rft.jtitle=Planta&rft.au=Feng,%20Junting&rft.date=2024-01-01&rft.volume=259&rft.issue=1&rft.spage=26&rft.epage=26&rft.pages=26-26&rft.artnum=26&rft.issn=0032-0935&rft.eissn=1432-2048&rft_id=info:doi/10.1007/s00425-023-04308-8&rft_dat=%3Cproquest_cross%3E2903102118%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2903102118&rft_id=info:pmid/38110586&rfr_iscdi=true |