Regulatory mechanism of the miR172e–LbrAP2 module during the vegetative growth phase transition in Lilium

Main conclusion It was proved for the first time that the miR172e– LbrAP2 module regulated the vegetative growth phase transition in Lilium , which provided a new approach to shorten the juvenile stage of Lilium , improved the reproduction rate, and reduced the propagation cost of Lilium commercial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Planta 2024-01, Vol.259 (1), p.26-26, Article 26
Hauptverfasser: Feng, Junting, Wang, Yiqing, Ge, Wei, Zhang, Kezhong, Cui, Jinteng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26
container_issue 1
container_start_page 26
container_title Planta
container_volume 259
creator Feng, Junting
Wang, Yiqing
Ge, Wei
Zhang, Kezhong
Cui, Jinteng
description Main conclusion It was proved for the first time that the miR172e– LbrAP2 module regulated the vegetative growth phase transition in Lilium , which provided a new approach to shorten the juvenile stage of Lilium , improved the reproduction rate, and reduced the propagation cost of Lilium commercial bulbs. Lilium is an ornamental bulb plant that takes at least 3 years to cultivate into commercial seed bulbs under natural conditions. The aim of this study was to shorten the Lilium expansion cycle. In this study, the growth cycle of lily tubers induced by low temperature of 15 °C was significantly shorter than that of tubers grown at a conventional temperature. Quantitative real-time PCR analysis showed that the expression patterns of miR172e and LbrAP2 were negatively correlated. GUS histochemical staining confirmed that miR172e and LbrAP2 in tobacco leaves interacted with each other after co-transformation. The shear sites of miR172e and its target gene, LbrAP2 , upon binding, were identified by RLM 5′ RACE analysis. In addition, miR172e and LbrAP2 showed opposite expression patterns after the transformation of Arabidopsis . miR172e overexpression accelerated the transition from juvenile to adult plants, whereas LbrAP2 overexpression inhibited this process, thus indicating that miR172e negatively regulated the target gene LbrAP2 . Upregulation of the transcription factor LbrAP2 delayed the phase transition of plants, whereas miR172 inhibited the transcriptional translation of LbrAP2 , thereby accelerating the phase transition. Low-temperature treatment of Lilium bulbs can shorten Lilium development, which provides a new approach to accelerating Lilium commercial bulb breeding and reducing breeding costs.
doi_str_mv 10.1007/s00425-023-04308-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2903860294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2903102118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-36b652110636796fe89409d0510fc10e4523e06807d6fda46f5c3556f147584f3</originalsourceid><addsrcrecordid>eNqFkctu1DAUhi0EokPhBVggS2y6CT2-xllWVblII1FVZW15kuMZlyQe7KSou74Db8iT4JkpILGgK1vy9_8-9kfIawbvGEB9mgEkVxVwUYEUYCrzhCyYFLziIM1TsgAoe2iEOiIvcr4BKId1_ZwcCcMYKKMX5OsVrufeTTHd0QHbjRtDHmj0dNogHcIVqzn-vP-xXKWzS06H2M090m5OYVzvkVtc4-SmcIt0neL3aUO3G5eRTsmNOUwhjjSMdBn6MA8vyTPv-oyvHtZj8uX9xfX5x2r5-cOn87Nl1QrVTJXQK614GVALXTfao2kkNB0oBr5lgFJxgaAN1J32nZPaqxJU2jNZKyO9OCYnh95tit9mzJMdQm6x792Icc5WMLXjhdaPorwBYTTwRhb07T_oTZzTWB6ypxiUkU2h-IFqU8w5obfbFAaX7iwDu7NmD9ZssWb31uwu9Oahel4N2P2J_NZUAHEA8nb385j-3v2f2l91bKC9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2903102118</pqid></control><display><type>article</type><title>Regulatory mechanism of the miR172e–LbrAP2 module during the vegetative growth phase transition in Lilium</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Feng, Junting ; Wang, Yiqing ; Ge, Wei ; Zhang, Kezhong ; Cui, Jinteng</creator><creatorcontrib>Feng, Junting ; Wang, Yiqing ; Ge, Wei ; Zhang, Kezhong ; Cui, Jinteng</creatorcontrib><description>Main conclusion It was proved for the first time that the miR172e– LbrAP2 module regulated the vegetative growth phase transition in Lilium , which provided a new approach to shorten the juvenile stage of Lilium , improved the reproduction rate, and reduced the propagation cost of Lilium commercial bulbs. Lilium is an ornamental bulb plant that takes at least 3 years to cultivate into commercial seed bulbs under natural conditions. The aim of this study was to shorten the Lilium expansion cycle. In this study, the growth cycle of lily tubers induced by low temperature of 15 °C was significantly shorter than that of tubers grown at a conventional temperature. Quantitative real-time PCR analysis showed that the expression patterns of miR172e and LbrAP2 were negatively correlated. GUS histochemical staining confirmed that miR172e and LbrAP2 in tobacco leaves interacted with each other after co-transformation. The shear sites of miR172e and its target gene, LbrAP2 , upon binding, were identified by RLM 5′ RACE analysis. In addition, miR172e and LbrAP2 showed opposite expression patterns after the transformation of Arabidopsis . miR172e overexpression accelerated the transition from juvenile to adult plants, whereas LbrAP2 overexpression inhibited this process, thus indicating that miR172e negatively regulated the target gene LbrAP2 . Upregulation of the transcription factor LbrAP2 delayed the phase transition of plants, whereas miR172 inhibited the transcriptional translation of LbrAP2 , thereby accelerating the phase transition. Low-temperature treatment of Lilium bulbs can shorten Lilium development, which provides a new approach to accelerating Lilium commercial bulb breeding and reducing breeding costs.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/s00425-023-04308-8</identifier><identifier>PMID: 38110586</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>adults ; Agriculture ; Arabidopsis ; Biomedical and Life Sciences ; Breeding ; Bulbs ; Ecology ; Flowers - genetics ; Forestry ; Gene Expression Regulation, Plant ; genes ; Genetic transformation ; juveniles ; Life Sciences ; Lilium ; Lilium - genetics ; Lilium - metabolism ; Low temperature ; Modules ; Original Article ; Ornamental plants ; phase transition ; Phase transitions ; Plant Breeding ; Plant Roots - genetics ; Plant Sciences ; Predation ; Propagation ; quantitative polymerase chain reaction ; Regulatory mechanisms (biology) ; reproduction ; temperature ; Tobacco ; transcription (genetics) ; transcription factors ; Transcription Factors - genetics ; Tubers ; vegetative growth</subject><ispartof>Planta, 2024-01, Vol.259 (1), p.26-26, Article 26</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-36b652110636796fe89409d0510fc10e4523e06807d6fda46f5c3556f147584f3</cites><orcidid>0000-0003-2575-5330</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00425-023-04308-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00425-023-04308-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38110586$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feng, Junting</creatorcontrib><creatorcontrib>Wang, Yiqing</creatorcontrib><creatorcontrib>Ge, Wei</creatorcontrib><creatorcontrib>Zhang, Kezhong</creatorcontrib><creatorcontrib>Cui, Jinteng</creatorcontrib><title>Regulatory mechanism of the miR172e–LbrAP2 module during the vegetative growth phase transition in Lilium</title><title>Planta</title><addtitle>Planta</addtitle><addtitle>Planta</addtitle><description>Main conclusion It was proved for the first time that the miR172e– LbrAP2 module regulated the vegetative growth phase transition in Lilium , which provided a new approach to shorten the juvenile stage of Lilium , improved the reproduction rate, and reduced the propagation cost of Lilium commercial bulbs. Lilium is an ornamental bulb plant that takes at least 3 years to cultivate into commercial seed bulbs under natural conditions. The aim of this study was to shorten the Lilium expansion cycle. In this study, the growth cycle of lily tubers induced by low temperature of 15 °C was significantly shorter than that of tubers grown at a conventional temperature. Quantitative real-time PCR analysis showed that the expression patterns of miR172e and LbrAP2 were negatively correlated. GUS histochemical staining confirmed that miR172e and LbrAP2 in tobacco leaves interacted with each other after co-transformation. The shear sites of miR172e and its target gene, LbrAP2 , upon binding, were identified by RLM 5′ RACE analysis. In addition, miR172e and LbrAP2 showed opposite expression patterns after the transformation of Arabidopsis . miR172e overexpression accelerated the transition from juvenile to adult plants, whereas LbrAP2 overexpression inhibited this process, thus indicating that miR172e negatively regulated the target gene LbrAP2 . Upregulation of the transcription factor LbrAP2 delayed the phase transition of plants, whereas miR172 inhibited the transcriptional translation of LbrAP2 , thereby accelerating the phase transition. Low-temperature treatment of Lilium bulbs can shorten Lilium development, which provides a new approach to accelerating Lilium commercial bulb breeding and reducing breeding costs.</description><subject>adults</subject><subject>Agriculture</subject><subject>Arabidopsis</subject><subject>Biomedical and Life Sciences</subject><subject>Breeding</subject><subject>Bulbs</subject><subject>Ecology</subject><subject>Flowers - genetics</subject><subject>Forestry</subject><subject>Gene Expression Regulation, Plant</subject><subject>genes</subject><subject>Genetic transformation</subject><subject>juveniles</subject><subject>Life Sciences</subject><subject>Lilium</subject><subject>Lilium - genetics</subject><subject>Lilium - metabolism</subject><subject>Low temperature</subject><subject>Modules</subject><subject>Original Article</subject><subject>Ornamental plants</subject><subject>phase transition</subject><subject>Phase transitions</subject><subject>Plant Breeding</subject><subject>Plant Roots - genetics</subject><subject>Plant Sciences</subject><subject>Predation</subject><subject>Propagation</subject><subject>quantitative polymerase chain reaction</subject><subject>Regulatory mechanisms (biology)</subject><subject>reproduction</subject><subject>temperature</subject><subject>Tobacco</subject><subject>transcription (genetics)</subject><subject>transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Tubers</subject><subject>vegetative growth</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkctu1DAUhi0EokPhBVggS2y6CT2-xllWVblII1FVZW15kuMZlyQe7KSou74Db8iT4JkpILGgK1vy9_8-9kfIawbvGEB9mgEkVxVwUYEUYCrzhCyYFLziIM1TsgAoe2iEOiIvcr4BKId1_ZwcCcMYKKMX5OsVrufeTTHd0QHbjRtDHmj0dNogHcIVqzn-vP-xXKWzS06H2M090m5OYVzvkVtc4-SmcIt0neL3aUO3G5eRTsmNOUwhjjSMdBn6MA8vyTPv-oyvHtZj8uX9xfX5x2r5-cOn87Nl1QrVTJXQK614GVALXTfao2kkNB0oBr5lgFJxgaAN1J32nZPaqxJU2jNZKyO9OCYnh95tit9mzJMdQm6x792Icc5WMLXjhdaPorwBYTTwRhb07T_oTZzTWB6ypxiUkU2h-IFqU8w5obfbFAaX7iwDu7NmD9ZssWb31uwu9Oahel4N2P2J_NZUAHEA8nb385j-3v2f2l91bKC9</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Feng, Junting</creator><creator>Wang, Yiqing</creator><creator>Ge, Wei</creator><creator>Zhang, Kezhong</creator><creator>Cui, Jinteng</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-2575-5330</orcidid></search><sort><creationdate>20240101</creationdate><title>Regulatory mechanism of the miR172e–LbrAP2 module during the vegetative growth phase transition in Lilium</title><author>Feng, Junting ; Wang, Yiqing ; Ge, Wei ; Zhang, Kezhong ; Cui, Jinteng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-36b652110636796fe89409d0510fc10e4523e06807d6fda46f5c3556f147584f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>adults</topic><topic>Agriculture</topic><topic>Arabidopsis</topic><topic>Biomedical and Life Sciences</topic><topic>Breeding</topic><topic>Bulbs</topic><topic>Ecology</topic><topic>Flowers - genetics</topic><topic>Forestry</topic><topic>Gene Expression Regulation, Plant</topic><topic>genes</topic><topic>Genetic transformation</topic><topic>juveniles</topic><topic>Life Sciences</topic><topic>Lilium</topic><topic>Lilium - genetics</topic><topic>Lilium - metabolism</topic><topic>Low temperature</topic><topic>Modules</topic><topic>Original Article</topic><topic>Ornamental plants</topic><topic>phase transition</topic><topic>Phase transitions</topic><topic>Plant Breeding</topic><topic>Plant Roots - genetics</topic><topic>Plant Sciences</topic><topic>Predation</topic><topic>Propagation</topic><topic>quantitative polymerase chain reaction</topic><topic>Regulatory mechanisms (biology)</topic><topic>reproduction</topic><topic>temperature</topic><topic>Tobacco</topic><topic>transcription (genetics)</topic><topic>transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Tubers</topic><topic>vegetative growth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Junting</creatorcontrib><creatorcontrib>Wang, Yiqing</creatorcontrib><creatorcontrib>Ge, Wei</creatorcontrib><creatorcontrib>Zhang, Kezhong</creatorcontrib><creatorcontrib>Cui, Jinteng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Junting</au><au>Wang, Yiqing</au><au>Ge, Wei</au><au>Zhang, Kezhong</au><au>Cui, Jinteng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulatory mechanism of the miR172e–LbrAP2 module during the vegetative growth phase transition in Lilium</atitle><jtitle>Planta</jtitle><stitle>Planta</stitle><addtitle>Planta</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>259</volume><issue>1</issue><spage>26</spage><epage>26</epage><pages>26-26</pages><artnum>26</artnum><issn>0032-0935</issn><eissn>1432-2048</eissn><abstract>Main conclusion It was proved for the first time that the miR172e– LbrAP2 module regulated the vegetative growth phase transition in Lilium , which provided a new approach to shorten the juvenile stage of Lilium , improved the reproduction rate, and reduced the propagation cost of Lilium commercial bulbs. Lilium is an ornamental bulb plant that takes at least 3 years to cultivate into commercial seed bulbs under natural conditions. The aim of this study was to shorten the Lilium expansion cycle. In this study, the growth cycle of lily tubers induced by low temperature of 15 °C was significantly shorter than that of tubers grown at a conventional temperature. Quantitative real-time PCR analysis showed that the expression patterns of miR172e and LbrAP2 were negatively correlated. GUS histochemical staining confirmed that miR172e and LbrAP2 in tobacco leaves interacted with each other after co-transformation. The shear sites of miR172e and its target gene, LbrAP2 , upon binding, were identified by RLM 5′ RACE analysis. In addition, miR172e and LbrAP2 showed opposite expression patterns after the transformation of Arabidopsis . miR172e overexpression accelerated the transition from juvenile to adult plants, whereas LbrAP2 overexpression inhibited this process, thus indicating that miR172e negatively regulated the target gene LbrAP2 . Upregulation of the transcription factor LbrAP2 delayed the phase transition of plants, whereas miR172 inhibited the transcriptional translation of LbrAP2 , thereby accelerating the phase transition. Low-temperature treatment of Lilium bulbs can shorten Lilium development, which provides a new approach to accelerating Lilium commercial bulb breeding and reducing breeding costs.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38110586</pmid><doi>10.1007/s00425-023-04308-8</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2575-5330</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0032-0935
ispartof Planta, 2024-01, Vol.259 (1), p.26-26, Article 26
issn 0032-0935
1432-2048
language eng
recordid cdi_proquest_miscellaneous_2903860294
source MEDLINE; Springer Nature - Complete Springer Journals
subjects adults
Agriculture
Arabidopsis
Biomedical and Life Sciences
Breeding
Bulbs
Ecology
Flowers - genetics
Forestry
Gene Expression Regulation, Plant
genes
Genetic transformation
juveniles
Life Sciences
Lilium
Lilium - genetics
Lilium - metabolism
Low temperature
Modules
Original Article
Ornamental plants
phase transition
Phase transitions
Plant Breeding
Plant Roots - genetics
Plant Sciences
Predation
Propagation
quantitative polymerase chain reaction
Regulatory mechanisms (biology)
reproduction
temperature
Tobacco
transcription (genetics)
transcription factors
Transcription Factors - genetics
Tubers
vegetative growth
title Regulatory mechanism of the miR172e–LbrAP2 module during the vegetative growth phase transition in Lilium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A49%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulatory%20mechanism%20of%20the%20miR172e%E2%80%93LbrAP2%20module%20during%20the%20vegetative%20growth%20phase%20transition%20in%20Lilium&rft.jtitle=Planta&rft.au=Feng,%20Junting&rft.date=2024-01-01&rft.volume=259&rft.issue=1&rft.spage=26&rft.epage=26&rft.pages=26-26&rft.artnum=26&rft.issn=0032-0935&rft.eissn=1432-2048&rft_id=info:doi/10.1007/s00425-023-04308-8&rft_dat=%3Cproquest_cross%3E2903102118%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2903102118&rft_id=info:pmid/38110586&rfr_iscdi=true