Strong H‑bonding from Zeolite Bro̷nsted Acid Site to Water: Origin of the Broad IR Doublet

Hydrogen bonding between water molecules and zeolite Bro̷nsted acid sites (BAS) has received much attention due to the significant influence of water on the adsorption and catalytic properties of these widely used porous materials. When a single water molecule is adsorbed at the BAS, the zeolite O–H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2023-12, Vol.127 (51), p.11054-11063
Hauptverfasser: Hack, John H., Chen, Yaxin, Lewis, Nicholas H. C., Kung, Harold H., Tokmakoff, Andrei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11063
container_issue 51
container_start_page 11054
container_title The journal of physical chemistry. B
container_volume 127
creator Hack, John H.
Chen, Yaxin
Lewis, Nicholas H. C.
Kung, Harold H.
Tokmakoff, Andrei
description Hydrogen bonding between water molecules and zeolite Bro̷nsted acid sites (BAS) has received much attention due to the significant influence of water on the adsorption and catalytic properties of these widely used porous materials. When a single water molecule is adsorbed at the BAS, the zeolite O–H stretch vibration decreases in frequency and splits into two extraordinarily broad bands peaked near 2500 and 2900 cm–1 in the infrared (IR) spectrum. This broad doublet feature is the predominant IR signature used to identify and interpret water-BAS H-bonding at low hydration levels, but the origin of the band splitting is not well understood. In this study, we used broadband two-dimensional infrared (2D IR) spectroscopy to investigate zeolite HZSM-5 prepared with a single water molecule per BAS. We find that the 2D IR spectrum is not explained by the most common interpretation of Fermi resonance coupling between the stretch and the bend of the BAS OH group, which predicts intense excited-state transitions that are absent from the experimental results. We present an alternative model of a double-well proton stretch potential, where the band splitting is caused by excited-state tunneling through the proton-transfer barrier. This one-dimensional model reproduces the basic experimental pattern of transition frequencies and amplitudes, suggesting that the doublet bands may originate from a highly anharmonic potential in which the excited state proton wave functions are delocalized over the H-bond between zeolite BAS and adsorbed H2O. Additional details about molecular orientation and coordination of the adsorbed water molecule are also resolved in the 2D IR spectroscopy.
doi_str_mv 10.1021/acs.jpcb.3c06819
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2903859255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2903859255</sourcerecordid><originalsourceid>FETCH-LOGICAL-a251t-1cd0d0c57e0cdfba22212448765fe5d7c3bbbe5309a14c056e8895505c7b18463</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMotlb3riRLF7aeZCZzcVfrpYVCwSqCIENuU6dMJzXJLNz5Cj6NL-FT-CROL7pzcTiH8P0_5EPomECPACXnXLrefClFL5AQJSTdQW3CKHSbiXe3d0QgaqED5-YAlNEk2ketICGQ0jhso-ept6aa4eH3-4cwlSqaO7dmgZ-0KQuv8aU1X5-V81rhviwUnq4evcGP3Gt7gSe2mBUVNjn2L2uYKzy6w1emFqX2h2gv56XTR9vdQQ831_eDYXc8uR0N-uMup4z4LpEKFEgWa5AqF5xSSmgYJnHEcs1ULAMhhGYBpJyEElikkyRlDJiMBUnCKOig003v0prXWjufLQondVnySpvaZTSFIGEpZaxBYYNKa5yzOs-Wtlhw-5YRyFZSs0ZqtpKabaU2kZNtey0WWv0Ffi02wNkGWEdNbavms__3_QBKpYNK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2903859255</pqid></control><display><type>article</type><title>Strong H‑bonding from Zeolite Bro̷nsted Acid Site to Water: Origin of the Broad IR Doublet</title><source>ACS Publications</source><creator>Hack, John H. ; Chen, Yaxin ; Lewis, Nicholas H. C. ; Kung, Harold H. ; Tokmakoff, Andrei</creator><creatorcontrib>Hack, John H. ; Chen, Yaxin ; Lewis, Nicholas H. C. ; Kung, Harold H. ; Tokmakoff, Andrei</creatorcontrib><description>Hydrogen bonding between water molecules and zeolite Bro̷nsted acid sites (BAS) has received much attention due to the significant influence of water on the adsorption and catalytic properties of these widely used porous materials. When a single water molecule is adsorbed at the BAS, the zeolite O–H stretch vibration decreases in frequency and splits into two extraordinarily broad bands peaked near 2500 and 2900 cm–1 in the infrared (IR) spectrum. This broad doublet feature is the predominant IR signature used to identify and interpret water-BAS H-bonding at low hydration levels, but the origin of the band splitting is not well understood. In this study, we used broadband two-dimensional infrared (2D IR) spectroscopy to investigate zeolite HZSM-5 prepared with a single water molecule per BAS. We find that the 2D IR spectrum is not explained by the most common interpretation of Fermi resonance coupling between the stretch and the bend of the BAS OH group, which predicts intense excited-state transitions that are absent from the experimental results. We present an alternative model of a double-well proton stretch potential, where the band splitting is caused by excited-state tunneling through the proton-transfer barrier. This one-dimensional model reproduces the basic experimental pattern of transition frequencies and amplitudes, suggesting that the doublet bands may originate from a highly anharmonic potential in which the excited state proton wave functions are delocalized over the H-bond between zeolite BAS and adsorbed H2O. Additional details about molecular orientation and coordination of the adsorbed water molecule are also resolved in the 2D IR spectroscopy.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.3c06819</identifier><identifier>PMID: 38109274</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>B: Liquids; Chemical and Dynamical Processes in Solution</subject><ispartof>The journal of physical chemistry. B, 2023-12, Vol.127 (51), p.11054-11063</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a251t-1cd0d0c57e0cdfba22212448765fe5d7c3bbbe5309a14c056e8895505c7b18463</citedby><cites>FETCH-LOGICAL-a251t-1cd0d0c57e0cdfba22212448765fe5d7c3bbbe5309a14c056e8895505c7b18463</cites><orcidid>0000-0001-9599-0155 ; 0000-0003-0042-0921 ; 0000-0002-2434-8744 ; 0000-0002-2554-0199</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.3c06819$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.3c06819$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38109274$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hack, John H.</creatorcontrib><creatorcontrib>Chen, Yaxin</creatorcontrib><creatorcontrib>Lewis, Nicholas H. C.</creatorcontrib><creatorcontrib>Kung, Harold H.</creatorcontrib><creatorcontrib>Tokmakoff, Andrei</creatorcontrib><title>Strong H‑bonding from Zeolite Bro̷nsted Acid Site to Water: Origin of the Broad IR Doublet</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Hydrogen bonding between water molecules and zeolite Bro̷nsted acid sites (BAS) has received much attention due to the significant influence of water on the adsorption and catalytic properties of these widely used porous materials. When a single water molecule is adsorbed at the BAS, the zeolite O–H stretch vibration decreases in frequency and splits into two extraordinarily broad bands peaked near 2500 and 2900 cm–1 in the infrared (IR) spectrum. This broad doublet feature is the predominant IR signature used to identify and interpret water-BAS H-bonding at low hydration levels, but the origin of the band splitting is not well understood. In this study, we used broadband two-dimensional infrared (2D IR) spectroscopy to investigate zeolite HZSM-5 prepared with a single water molecule per BAS. We find that the 2D IR spectrum is not explained by the most common interpretation of Fermi resonance coupling between the stretch and the bend of the BAS OH group, which predicts intense excited-state transitions that are absent from the experimental results. We present an alternative model of a double-well proton stretch potential, where the band splitting is caused by excited-state tunneling through the proton-transfer barrier. This one-dimensional model reproduces the basic experimental pattern of transition frequencies and amplitudes, suggesting that the doublet bands may originate from a highly anharmonic potential in which the excited state proton wave functions are delocalized over the H-bond between zeolite BAS and adsorbed H2O. Additional details about molecular orientation and coordination of the adsorbed water molecule are also resolved in the 2D IR spectroscopy.</description><subject>B: Liquids; Chemical and Dynamical Processes in Solution</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMotlb3riRLF7aeZCZzcVfrpYVCwSqCIENuU6dMJzXJLNz5Cj6NL-FT-CROL7pzcTiH8P0_5EPomECPACXnXLrefClFL5AQJSTdQW3CKHSbiXe3d0QgaqED5-YAlNEk2ketICGQ0jhso-ept6aa4eH3-4cwlSqaO7dmgZ-0KQuv8aU1X5-V81rhviwUnq4evcGP3Gt7gSe2mBUVNjn2L2uYKzy6w1emFqX2h2gv56XTR9vdQQ831_eDYXc8uR0N-uMup4z4LpEKFEgWa5AqF5xSSmgYJnHEcs1ULAMhhGYBpJyEElikkyRlDJiMBUnCKOig003v0prXWjufLQondVnySpvaZTSFIGEpZaxBYYNKa5yzOs-Wtlhw-5YRyFZSs0ZqtpKabaU2kZNtey0WWv0Ffi02wNkGWEdNbavms__3_QBKpYNK</recordid><startdate>20231228</startdate><enddate>20231228</enddate><creator>Hack, John H.</creator><creator>Chen, Yaxin</creator><creator>Lewis, Nicholas H. C.</creator><creator>Kung, Harold H.</creator><creator>Tokmakoff, Andrei</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9599-0155</orcidid><orcidid>https://orcid.org/0000-0003-0042-0921</orcidid><orcidid>https://orcid.org/0000-0002-2434-8744</orcidid><orcidid>https://orcid.org/0000-0002-2554-0199</orcidid></search><sort><creationdate>20231228</creationdate><title>Strong H‑bonding from Zeolite Bro̷nsted Acid Site to Water: Origin of the Broad IR Doublet</title><author>Hack, John H. ; Chen, Yaxin ; Lewis, Nicholas H. C. ; Kung, Harold H. ; Tokmakoff, Andrei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a251t-1cd0d0c57e0cdfba22212448765fe5d7c3bbbe5309a14c056e8895505c7b18463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>B: Liquids; Chemical and Dynamical Processes in Solution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hack, John H.</creatorcontrib><creatorcontrib>Chen, Yaxin</creatorcontrib><creatorcontrib>Lewis, Nicholas H. C.</creatorcontrib><creatorcontrib>Kung, Harold H.</creatorcontrib><creatorcontrib>Tokmakoff, Andrei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hack, John H.</au><au>Chen, Yaxin</au><au>Lewis, Nicholas H. C.</au><au>Kung, Harold H.</au><au>Tokmakoff, Andrei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong H‑bonding from Zeolite Bro̷nsted Acid Site to Water: Origin of the Broad IR Doublet</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2023-12-28</date><risdate>2023</risdate><volume>127</volume><issue>51</issue><spage>11054</spage><epage>11063</epage><pages>11054-11063</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Hydrogen bonding between water molecules and zeolite Bro̷nsted acid sites (BAS) has received much attention due to the significant influence of water on the adsorption and catalytic properties of these widely used porous materials. When a single water molecule is adsorbed at the BAS, the zeolite O–H stretch vibration decreases in frequency and splits into two extraordinarily broad bands peaked near 2500 and 2900 cm–1 in the infrared (IR) spectrum. This broad doublet feature is the predominant IR signature used to identify and interpret water-BAS H-bonding at low hydration levels, but the origin of the band splitting is not well understood. In this study, we used broadband two-dimensional infrared (2D IR) spectroscopy to investigate zeolite HZSM-5 prepared with a single water molecule per BAS. We find that the 2D IR spectrum is not explained by the most common interpretation of Fermi resonance coupling between the stretch and the bend of the BAS OH group, which predicts intense excited-state transitions that are absent from the experimental results. We present an alternative model of a double-well proton stretch potential, where the band splitting is caused by excited-state tunneling through the proton-transfer barrier. This one-dimensional model reproduces the basic experimental pattern of transition frequencies and amplitudes, suggesting that the doublet bands may originate from a highly anharmonic potential in which the excited state proton wave functions are delocalized over the H-bond between zeolite BAS and adsorbed H2O. Additional details about molecular orientation and coordination of the adsorbed water molecule are also resolved in the 2D IR spectroscopy.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38109274</pmid><doi>10.1021/acs.jpcb.3c06819</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9599-0155</orcidid><orcidid>https://orcid.org/0000-0003-0042-0921</orcidid><orcidid>https://orcid.org/0000-0002-2434-8744</orcidid><orcidid>https://orcid.org/0000-0002-2554-0199</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2023-12, Vol.127 (51), p.11054-11063
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_2903859255
source ACS Publications
subjects B: Liquids
Chemical and Dynamical Processes in Solution
title Strong H‑bonding from Zeolite Bro̷nsted Acid Site to Water: Origin of the Broad IR Doublet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T05%3A48%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20H%E2%80%91bonding%20from%20Zeolite%20Bro%CC%B7nsted%20Acid%20Site%20to%20Water:%20Origin%20of%20the%20Broad%20IR%20Doublet&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Hack,%20John%20H.&rft.date=2023-12-28&rft.volume=127&rft.issue=51&rft.spage=11054&rft.epage=11063&rft.pages=11054-11063&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.3c06819&rft_dat=%3Cproquest_cross%3E2903859255%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2903859255&rft_id=info:pmid/38109274&rfr_iscdi=true