Comparative Effects of Hydrazine and Thermal Reduction Methods on Electromagnetic Interference Shielding Characteristics in Foamed Titanium Carbonitride MXene Films

The urgent need for the development of micro‐thin shields against electromagnetic interference (EMI) has sparked interest in MXene materials owing to their metallic electrical conductivity and ease of film processing. Meanwhile, postprocessing treatments can potentially exert profound impacts on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-05, Vol.20 (21), p.e2308320-n/a
Hauptverfasser: Rahmati, Reza, Salari, Meysam, Ashouri‐Sanjani, Mehran, Salehi, Amirmehdi, Hamidinejad, Mahdi, Park, Chul B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 21
container_start_page e2308320
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Rahmati, Reza
Salari, Meysam
Ashouri‐Sanjani, Mehran
Salehi, Amirmehdi
Hamidinejad, Mahdi
Park, Chul B.
description The urgent need for the development of micro‐thin shields against electromagnetic interference (EMI) has sparked interest in MXene materials owing to their metallic electrical conductivity and ease of film processing. Meanwhile, postprocessing treatments can potentially exert profound impacts on their shielding effectiveness (SE). This work comprehensively compares two reduction methods, hydrazine versus thermal, to fabricate foamed titanium carbonitride (Ti3CNTx) MXene films for efficient EMI shielding. Upon treatment of ≈ 100 µm‐thick MXene films, gaseous transformations of oxygen‐containing surface groups induce highly porous structures (up to ≈ 74.0% porosity). The controlled application of hydrazine and heat allows precise regulation of the reduction processes, enabling tailored control over the morphology, thickness, chemistry, and electrical properties of the MXene films. Accordingly, the EMI SE values are theoretically and experimentally determined. The treated MXene films exhibit significantly enhanced SE values compared to the pristine MXene film (≈ 52.2 dB), with ≈ 38% and ≈ 83% maximum improvements for the hydrazine and heat‐treated samples, respectively. Particularly, heat treatment is more effective in terms of this enhancement such that an SE of 118.4 dB is achieved at 14.3 GHz, unprecedented for synthetic materials. Overall, the findings of this work hold significant practical implications for advancing high‐performance, non‐metallic EMI shielding materials. Hydrazine and heat postprocessing treatments of titanium carbonitride MXene films trigger the formation of highly porous structures through efficient reduction of oxygenated surface terminations releasing gaseous products. Extensive evaluation of microstructural, chemical, electrical, and shielding parameters endows both processes with meticulous customizability to secure the utmost EMI shielding performance, with heat treatment showing superior results.
doi_str_mv 10.1002/smll.202308320
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2903323129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3059109710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4130-cfa7247c9150d77a7ccedbcd8e32b01081884042902a224dd1bc19a114f208b63</originalsourceid><addsrcrecordid>eNqFkU9vEzEQxVcIREvhyhFZ4sIl6djeZHePaJXQSokq0SJxs7z2bOPKf4LtBYXPwwfFVUqQuHDyyP69N555VfWWwpwCsMvkrJ0zYBxazuBZdU6XlM-WLeuen2oKZ9WrlB4AOGV187I64-VuUTN2Xv3qg9vLKLP5jmQ1jqhyImEkVwcd5U_jkUivyd0Oo5OWfEY9qWyCJ1vMu6AL6snKFlEMTt57zEaRa58xjhjRKyS3O4NWG39P-l1po8qTSYVKxHiyDtJhcTdZejM50ss4BG9yNBrJ9iuW7mtjXXpdvRilTfjm6byovqxXd_3VbHPz6br_uJmpmnKYqVE2ZT7V0QXoppGNUqgHpVvkbAAKLW3bGmrWAZOM1VrTQdFOUlqPDNphyS-qD0fffQzfJkxZOJMUWis9himJouSclSV2BX3_D_oQpujL7wSHRUehaygUan6kVAwpRRzFPhon40FQEI_5icf8xCm_Inj3ZDsNZTUn_E9gBeiOwA9j8fAfO3G73Wz-mv8GLjupYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059109710</pqid></control><display><type>article</type><title>Comparative Effects of Hydrazine and Thermal Reduction Methods on Electromagnetic Interference Shielding Characteristics in Foamed Titanium Carbonitride MXene Films</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Rahmati, Reza ; Salari, Meysam ; Ashouri‐Sanjani, Mehran ; Salehi, Amirmehdi ; Hamidinejad, Mahdi ; Park, Chul B.</creator><creatorcontrib>Rahmati, Reza ; Salari, Meysam ; Ashouri‐Sanjani, Mehran ; Salehi, Amirmehdi ; Hamidinejad, Mahdi ; Park, Chul B.</creatorcontrib><description>The urgent need for the development of micro‐thin shields against electromagnetic interference (EMI) has sparked interest in MXene materials owing to their metallic electrical conductivity and ease of film processing. Meanwhile, postprocessing treatments can potentially exert profound impacts on their shielding effectiveness (SE). This work comprehensively compares two reduction methods, hydrazine versus thermal, to fabricate foamed titanium carbonitride (Ti3CNTx) MXene films for efficient EMI shielding. Upon treatment of ≈ 100 µm‐thick MXene films, gaseous transformations of oxygen‐containing surface groups induce highly porous structures (up to ≈ 74.0% porosity). The controlled application of hydrazine and heat allows precise regulation of the reduction processes, enabling tailored control over the morphology, thickness, chemistry, and electrical properties of the MXene films. Accordingly, the EMI SE values are theoretically and experimentally determined. The treated MXene films exhibit significantly enhanced SE values compared to the pristine MXene film (≈ 52.2 dB), with ≈ 38% and ≈ 83% maximum improvements for the hydrazine and heat‐treated samples, respectively. Particularly, heat treatment is more effective in terms of this enhancement such that an SE of 118.4 dB is achieved at 14.3 GHz, unprecedented for synthetic materials. Overall, the findings of this work hold significant practical implications for advancing high‐performance, non‐metallic EMI shielding materials. Hydrazine and heat postprocessing treatments of titanium carbonitride MXene films trigger the formation of highly porous structures through efficient reduction of oxygenated surface terminations releasing gaseous products. Extensive evaluation of microstructural, chemical, electrical, and shielding parameters endows both processes with meticulous customizability to secure the utmost EMI shielding performance, with heat treatment showing superior results.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202308320</identifier><identifier>PMID: 38105422</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Electrical properties ; Electrical resistivity ; Electromagnetic interference ; electromagnetic interference shielding ; Electromagnetic shielding ; Heat treatment ; hydrazine treatment ; Hydrazines ; MXenes ; surface modification ; Thermal reduction ; Thick films ; Titanium carbonitride ; titanium carbonitride MXene foam</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-05, Vol.20 (21), p.e2308320-n/a</ispartof><rights>2023 The Authors. Small published by Wiley‐VCH GmbH</rights><rights>2023 The Authors. Small published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4130-cfa7247c9150d77a7ccedbcd8e32b01081884042902a224dd1bc19a114f208b63</citedby><cites>FETCH-LOGICAL-c4130-cfa7247c9150d77a7ccedbcd8e32b01081884042902a224dd1bc19a114f208b63</cites><orcidid>0000-0002-1702-1268 ; 0009-0006-9672-2666 ; 0000-0003-0478-4124 ; 0000-0003-4288-5188 ; 0000-0003-3137-1990 ; 0000-0002-7367-6496</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202308320$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202308320$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38105422$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rahmati, Reza</creatorcontrib><creatorcontrib>Salari, Meysam</creatorcontrib><creatorcontrib>Ashouri‐Sanjani, Mehran</creatorcontrib><creatorcontrib>Salehi, Amirmehdi</creatorcontrib><creatorcontrib>Hamidinejad, Mahdi</creatorcontrib><creatorcontrib>Park, Chul B.</creatorcontrib><title>Comparative Effects of Hydrazine and Thermal Reduction Methods on Electromagnetic Interference Shielding Characteristics in Foamed Titanium Carbonitride MXene Films</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>The urgent need for the development of micro‐thin shields against electromagnetic interference (EMI) has sparked interest in MXene materials owing to their metallic electrical conductivity and ease of film processing. Meanwhile, postprocessing treatments can potentially exert profound impacts on their shielding effectiveness (SE). This work comprehensively compares two reduction methods, hydrazine versus thermal, to fabricate foamed titanium carbonitride (Ti3CNTx) MXene films for efficient EMI shielding. Upon treatment of ≈ 100 µm‐thick MXene films, gaseous transformations of oxygen‐containing surface groups induce highly porous structures (up to ≈ 74.0% porosity). The controlled application of hydrazine and heat allows precise regulation of the reduction processes, enabling tailored control over the morphology, thickness, chemistry, and electrical properties of the MXene films. Accordingly, the EMI SE values are theoretically and experimentally determined. The treated MXene films exhibit significantly enhanced SE values compared to the pristine MXene film (≈ 52.2 dB), with ≈ 38% and ≈ 83% maximum improvements for the hydrazine and heat‐treated samples, respectively. Particularly, heat treatment is more effective in terms of this enhancement such that an SE of 118.4 dB is achieved at 14.3 GHz, unprecedented for synthetic materials. Overall, the findings of this work hold significant practical implications for advancing high‐performance, non‐metallic EMI shielding materials. Hydrazine and heat postprocessing treatments of titanium carbonitride MXene films trigger the formation of highly porous structures through efficient reduction of oxygenated surface terminations releasing gaseous products. Extensive evaluation of microstructural, chemical, electrical, and shielding parameters endows both processes with meticulous customizability to secure the utmost EMI shielding performance, with heat treatment showing superior results.</description><subject>Electrical properties</subject><subject>Electrical resistivity</subject><subject>Electromagnetic interference</subject><subject>electromagnetic interference shielding</subject><subject>Electromagnetic shielding</subject><subject>Heat treatment</subject><subject>hydrazine treatment</subject><subject>Hydrazines</subject><subject>MXenes</subject><subject>surface modification</subject><subject>Thermal reduction</subject><subject>Thick films</subject><subject>Titanium carbonitride</subject><subject>titanium carbonitride MXene foam</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkU9vEzEQxVcIREvhyhFZ4sIl6djeZHePaJXQSokq0SJxs7z2bOPKf4LtBYXPwwfFVUqQuHDyyP69N555VfWWwpwCsMvkrJ0zYBxazuBZdU6XlM-WLeuen2oKZ9WrlB4AOGV187I64-VuUTN2Xv3qg9vLKLP5jmQ1jqhyImEkVwcd5U_jkUivyd0Oo5OWfEY9qWyCJ1vMu6AL6snKFlEMTt57zEaRa58xjhjRKyS3O4NWG39P-l1po8qTSYVKxHiyDtJhcTdZejM50ss4BG9yNBrJ9iuW7mtjXXpdvRilTfjm6byovqxXd_3VbHPz6br_uJmpmnKYqVE2ZT7V0QXoppGNUqgHpVvkbAAKLW3bGmrWAZOM1VrTQdFOUlqPDNphyS-qD0fffQzfJkxZOJMUWis9himJouSclSV2BX3_D_oQpujL7wSHRUehaygUan6kVAwpRRzFPhon40FQEI_5icf8xCm_Inj3ZDsNZTUn_E9gBeiOwA9j8fAfO3G73Wz-mv8GLjupYQ</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Rahmati, Reza</creator><creator>Salari, Meysam</creator><creator>Ashouri‐Sanjani, Mehran</creator><creator>Salehi, Amirmehdi</creator><creator>Hamidinejad, Mahdi</creator><creator>Park, Chul B.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1702-1268</orcidid><orcidid>https://orcid.org/0009-0006-9672-2666</orcidid><orcidid>https://orcid.org/0000-0003-0478-4124</orcidid><orcidid>https://orcid.org/0000-0003-4288-5188</orcidid><orcidid>https://orcid.org/0000-0003-3137-1990</orcidid><orcidid>https://orcid.org/0000-0002-7367-6496</orcidid></search><sort><creationdate>20240501</creationdate><title>Comparative Effects of Hydrazine and Thermal Reduction Methods on Electromagnetic Interference Shielding Characteristics in Foamed Titanium Carbonitride MXene Films</title><author>Rahmati, Reza ; Salari, Meysam ; Ashouri‐Sanjani, Mehran ; Salehi, Amirmehdi ; Hamidinejad, Mahdi ; Park, Chul B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4130-cfa7247c9150d77a7ccedbcd8e32b01081884042902a224dd1bc19a114f208b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Electrical properties</topic><topic>Electrical resistivity</topic><topic>Electromagnetic interference</topic><topic>electromagnetic interference shielding</topic><topic>Electromagnetic shielding</topic><topic>Heat treatment</topic><topic>hydrazine treatment</topic><topic>Hydrazines</topic><topic>MXenes</topic><topic>surface modification</topic><topic>Thermal reduction</topic><topic>Thick films</topic><topic>Titanium carbonitride</topic><topic>titanium carbonitride MXene foam</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahmati, Reza</creatorcontrib><creatorcontrib>Salari, Meysam</creatorcontrib><creatorcontrib>Ashouri‐Sanjani, Mehran</creatorcontrib><creatorcontrib>Salehi, Amirmehdi</creatorcontrib><creatorcontrib>Hamidinejad, Mahdi</creatorcontrib><creatorcontrib>Park, Chul B.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahmati, Reza</au><au>Salari, Meysam</au><au>Ashouri‐Sanjani, Mehran</au><au>Salehi, Amirmehdi</au><au>Hamidinejad, Mahdi</au><au>Park, Chul B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative Effects of Hydrazine and Thermal Reduction Methods on Electromagnetic Interference Shielding Characteristics in Foamed Titanium Carbonitride MXene Films</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>20</volume><issue>21</issue><spage>e2308320</spage><epage>n/a</epage><pages>e2308320-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>The urgent need for the development of micro‐thin shields against electromagnetic interference (EMI) has sparked interest in MXene materials owing to their metallic electrical conductivity and ease of film processing. Meanwhile, postprocessing treatments can potentially exert profound impacts on their shielding effectiveness (SE). This work comprehensively compares two reduction methods, hydrazine versus thermal, to fabricate foamed titanium carbonitride (Ti3CNTx) MXene films for efficient EMI shielding. Upon treatment of ≈ 100 µm‐thick MXene films, gaseous transformations of oxygen‐containing surface groups induce highly porous structures (up to ≈ 74.0% porosity). The controlled application of hydrazine and heat allows precise regulation of the reduction processes, enabling tailored control over the morphology, thickness, chemistry, and electrical properties of the MXene films. Accordingly, the EMI SE values are theoretically and experimentally determined. The treated MXene films exhibit significantly enhanced SE values compared to the pristine MXene film (≈ 52.2 dB), with ≈ 38% and ≈ 83% maximum improvements for the hydrazine and heat‐treated samples, respectively. Particularly, heat treatment is more effective in terms of this enhancement such that an SE of 118.4 dB is achieved at 14.3 GHz, unprecedented for synthetic materials. Overall, the findings of this work hold significant practical implications for advancing high‐performance, non‐metallic EMI shielding materials. Hydrazine and heat postprocessing treatments of titanium carbonitride MXene films trigger the formation of highly porous structures through efficient reduction of oxygenated surface terminations releasing gaseous products. Extensive evaluation of microstructural, chemical, electrical, and shielding parameters endows both processes with meticulous customizability to secure the utmost EMI shielding performance, with heat treatment showing superior results.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38105422</pmid><doi>10.1002/smll.202308320</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1702-1268</orcidid><orcidid>https://orcid.org/0009-0006-9672-2666</orcidid><orcidid>https://orcid.org/0000-0003-0478-4124</orcidid><orcidid>https://orcid.org/0000-0003-4288-5188</orcidid><orcidid>https://orcid.org/0000-0003-3137-1990</orcidid><orcidid>https://orcid.org/0000-0002-7367-6496</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-05, Vol.20 (21), p.e2308320-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2903323129
source Wiley Online Library Journals Frontfile Complete
subjects Electrical properties
Electrical resistivity
Electromagnetic interference
electromagnetic interference shielding
Electromagnetic shielding
Heat treatment
hydrazine treatment
Hydrazines
MXenes
surface modification
Thermal reduction
Thick films
Titanium carbonitride
titanium carbonitride MXene foam
title Comparative Effects of Hydrazine and Thermal Reduction Methods on Electromagnetic Interference Shielding Characteristics in Foamed Titanium Carbonitride MXene Films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T10%3A06%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20Effects%20of%20Hydrazine%20and%20Thermal%20Reduction%20Methods%20on%20Electromagnetic%20Interference%20Shielding%20Characteristics%20in%20Foamed%20Titanium%20Carbonitride%20MXene%20Films&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Rahmati,%20Reza&rft.date=2024-05-01&rft.volume=20&rft.issue=21&rft.spage=e2308320&rft.epage=n/a&rft.pages=e2308320-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202308320&rft_dat=%3Cproquest_cross%3E3059109710%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3059109710&rft_id=info:pmid/38105422&rfr_iscdi=true