Quadratically saturated regulator for constrained linear systems

The problem of stabilization and null-controllability of open-loop unstable discrete-time multi-input systems with constraints on the inputs and the controls is addressed in this paper. First necessary and sufficient conditions for solvability of the problem are derived. They guarantee the existence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 1996-07, Vol.41 (7), p.992-995
Hauptverfasser: Verriest, E.I., Pajunen, G.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 995
container_issue 7
container_start_page 992
container_title IEEE transactions on automatic control
container_volume 41
creator Verriest, E.I.
Pajunen, G.A.
description The problem of stabilization and null-controllability of open-loop unstable discrete-time multi-input systems with constraints on the inputs and the controls is addressed in this paper. First necessary and sufficient conditions for solvability of the problem are derived. They guarantee the existence of a linear controller leaving the state constraint set for the closed-loop system positively invariant. An optimal control law is computed, and the admissible set of initial conditions is given such that along trajectories of the closed-loop system the state and input constraints are satisfied. Then the domain of feasible initial conditions is enlarged using a saturating control if such is feasible.
doi_str_mv 10.1109/9.508902
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_29030022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>508902</ieee_id><sourcerecordid>29030022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-d084e666f498219fb97b133acf0f2b8f3b6187f711a092cb1fa82cefd685b86a3</originalsourceid><addsrcrecordid>eNqFkM1LxDAQxYMouK6CZ089iHjpmknaNLkpi1-wIIKeyzRNpNKPNdMe9r830mWvHmaGx_vxYB5jl8BXANzcmVXOteHiiC0gz3UqciGP2YJz0KkRWp2yM6LvKFWWwYLdv09YBxwbi227SwjHKSpXJ8F9TS2OQ0h8HDv0NAZs-ui0cWNIaEej6-icnXhsyV3s75J9Pj1-rF_Szdvz6_phk1op8zGtuc6cUspnRgswvjJFBVKi9dyLSntZKdCFLwCQG2Er8KiFdb5WOq-0QrlkN3PuNgw_k6Ox7Bqyrm2xd8NEpTBcci7E_6DOhYJCRfB2Bm0YiILz5TY0HYZdCbz867I05dxlRK_3mUixKB-wtw0deAkqvmcidjVjjXPu4O4zfgFja3uH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28526176</pqid></control><display><type>article</type><title>Quadratically saturated regulator for constrained linear systems</title><source>IEEE Xplore</source><creator>Verriest, E.I. ; Pajunen, G.A.</creator><creatorcontrib>Verriest, E.I. ; Pajunen, G.A.</creatorcontrib><description>The problem of stabilization and null-controllability of open-loop unstable discrete-time multi-input systems with constraints on the inputs and the controls is addressed in this paper. First necessary and sufficient conditions for solvability of the problem are derived. They guarantee the existence of a linear controller leaving the state constraint set for the closed-loop system positively invariant. An optimal control law is computed, and the admissible set of initial conditions is given such that along trajectories of the closed-loop system the state and input constraints are satisfied. Then the domain of feasible initial conditions is enlarged using a saturating control if such is feasible.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/9.508902</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control design ; Control systems ; Control theory. Systems ; Exact sciences and technology ; Linear systems ; Matrix decomposition ; Open loop systems ; Optimal control ; Regulators ; Singular value decomposition ; State feedback ; Sufficient conditions ; Vectors</subject><ispartof>IEEE transactions on automatic control, 1996-07, Vol.41 (7), p.992-995</ispartof><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-d084e666f498219fb97b133acf0f2b8f3b6187f711a092cb1fa82cefd685b86a3</citedby><cites>FETCH-LOGICAL-c335t-d084e666f498219fb97b133acf0f2b8f3b6187f711a092cb1fa82cefd685b86a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/508902$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/508902$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3160849$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Verriest, E.I.</creatorcontrib><creatorcontrib>Pajunen, G.A.</creatorcontrib><title>Quadratically saturated regulator for constrained linear systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>The problem of stabilization and null-controllability of open-loop unstable discrete-time multi-input systems with constraints on the inputs and the controls is addressed in this paper. First necessary and sufficient conditions for solvability of the problem are derived. They guarantee the existence of a linear controller leaving the state constraint set for the closed-loop system positively invariant. An optimal control law is computed, and the admissible set of initial conditions is given such that along trajectories of the closed-loop system the state and input constraints are satisfied. Then the domain of feasible initial conditions is enlarged using a saturating control if such is feasible.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control design</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Linear systems</subject><subject>Matrix decomposition</subject><subject>Open loop systems</subject><subject>Optimal control</subject><subject>Regulators</subject><subject>Singular value decomposition</subject><subject>State feedback</subject><subject>Sufficient conditions</subject><subject>Vectors</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LxDAQxYMouK6CZ089iHjpmknaNLkpi1-wIIKeyzRNpNKPNdMe9r830mWvHmaGx_vxYB5jl8BXANzcmVXOteHiiC0gz3UqciGP2YJz0KkRWp2yM6LvKFWWwYLdv09YBxwbi227SwjHKSpXJ8F9TS2OQ0h8HDv0NAZs-ui0cWNIaEej6-icnXhsyV3s75J9Pj1-rF_Szdvz6_phk1op8zGtuc6cUspnRgswvjJFBVKi9dyLSntZKdCFLwCQG2Er8KiFdb5WOq-0QrlkN3PuNgw_k6Ox7Bqyrm2xd8NEpTBcci7E_6DOhYJCRfB2Bm0YiILz5TY0HYZdCbz867I05dxlRK_3mUixKB-wtw0deAkqvmcidjVjjXPu4O4zfgFja3uH</recordid><startdate>19960701</startdate><enddate>19960701</enddate><creator>Verriest, E.I.</creator><creator>Pajunen, G.A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>19960701</creationdate><title>Quadratically saturated regulator for constrained linear systems</title><author>Verriest, E.I. ; Pajunen, G.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-d084e666f498219fb97b133acf0f2b8f3b6187f711a092cb1fa82cefd685b86a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control design</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Linear systems</topic><topic>Matrix decomposition</topic><topic>Open loop systems</topic><topic>Optimal control</topic><topic>Regulators</topic><topic>Singular value decomposition</topic><topic>State feedback</topic><topic>Sufficient conditions</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verriest, E.I.</creatorcontrib><creatorcontrib>Pajunen, G.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Verriest, E.I.</au><au>Pajunen, G.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quadratically saturated regulator for constrained linear systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1996-07-01</date><risdate>1996</risdate><volume>41</volume><issue>7</issue><spage>992</spage><epage>995</epage><pages>992-995</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>The problem of stabilization and null-controllability of open-loop unstable discrete-time multi-input systems with constraints on the inputs and the controls is addressed in this paper. First necessary and sufficient conditions for solvability of the problem are derived. They guarantee the existence of a linear controller leaving the state constraint set for the closed-loop system positively invariant. An optimal control law is computed, and the admissible set of initial conditions is given such that along trajectories of the closed-loop system the state and input constraints are satisfied. Then the domain of feasible initial conditions is enlarged using a saturating control if such is feasible.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/9.508902</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 1996-07, Vol.41 (7), p.992-995
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_miscellaneous_29030022
source IEEE Xplore
subjects Applied sciences
Computer science
control theory
systems
Control design
Control systems
Control theory. Systems
Exact sciences and technology
Linear systems
Matrix decomposition
Open loop systems
Optimal control
Regulators
Singular value decomposition
State feedback
Sufficient conditions
Vectors
title Quadratically saturated regulator for constrained linear systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A46%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quadratically%20saturated%20regulator%20for%20constrained%20linear%20systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Verriest,%20E.I.&rft.date=1996-07-01&rft.volume=41&rft.issue=7&rft.spage=992&rft.epage=995&rft.pages=992-995&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/9.508902&rft_dat=%3Cproquest_RIE%3E29030022%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28526176&rft_id=info:pmid/&rft_ieee_id=508902&rfr_iscdi=true