Hydrated Eutectic Electrolyte Induced Bilayer Interphase for High‐Performance Aqueous Zn‐Ion Batteries with 100 °C Wide‐Temperature Range

The practical implementation of aqueous zinc‐ion batteries (AZIBs) encounters challenges such as dendrite growth, parasitic reactions, and severe decay in battery performance under harsh environments. Here, a novel hydrated eutectic electrolyte (HEE) composed of Zn(ClO4)2·6H2O, ethylene glycol (EG),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-03, Vol.36 (11), p.e2310623-n/a
Hauptverfasser: Wan, Jiandong, Wang, Rui, Liu, Zixiang, Zhang, Shilin, Hao, Junnan, Mao, Jianfeng, Li, Hongbao, Chao, Dongliang, Zhang, Longhai, Zhang, Chaofeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page e2310623
container_title Advanced materials (Weinheim)
container_volume 36
creator Wan, Jiandong
Wang, Rui
Liu, Zixiang
Zhang, Shilin
Hao, Junnan
Mao, Jianfeng
Li, Hongbao
Chao, Dongliang
Zhang, Longhai
Zhang, Chaofeng
description The practical implementation of aqueous zinc‐ion batteries (AZIBs) encounters challenges such as dendrite growth, parasitic reactions, and severe decay in battery performance under harsh environments. Here, a novel hydrated eutectic electrolyte (HEE) composed of Zn(ClO4)2·6H2O, ethylene glycol (EG), and InCl3 solution is introduced to effectively extend the lifespan of AZIBs over a wide temperature range from −50 to 50 °C. Molecular dynamics simulations and spectroscopy analysis demonstrate that the H2O molecules are confined within the liquid eutectic network through dual‐interaction, involving coordination with Zn2+ and hydrogen bonding with EG, thus weakening the activity of free water and extending the electrochemical window. Importantly, cryo‐transmission electron microscopy and spectroscopy techniques reveal that HEE in situ forms a zincophobic/zincophilic bilayer interphase by the dissociation‐reduction of eutectic molecules. Specifically, the zincophilic interphase reduces the energy barrier for Zn nucleation, promoting uniform Zn deposition, while the zincophobic interphase prevents active water from contacting the Zn surface, thus inhibiting the side reactions. Furthermore, the relationships between the structural evolution of the liquid eutectic network and interfacial chemistry at electrode/electrolyte interphase are further discussed in this work. The scalability of this design strategy can bring benefits to AZIBs operating over a wide temperature range. The practical implementation of aqueous zinc‐ion batteries (AZIBs) is hindered by challenges such as dendrite growth, parasitic reactions, and severe decay in harsh environments. A new‐type hydrated eutectic electrolyte is developed to in situ form a zincophobic/zincophilic bilayer interphase, thereby improving the reversibility of AZIBs over a wide temperature range from −50 to 50 °C.
doi_str_mv 10.1002/adma.202310623
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2902974992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2902974992</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3733-1402dcb5c798b0d7bc2ca26feb0ad81fd235a7eaa6914ec3be466c230cd560403</originalsourceid><addsrcrecordid>eNqFkU1uFDEQhS1ERIbAliWyxIZND2W7291eToaBGSlREApCYtNy29UZR_0z2N2KescR4AYcgTPkKJwEjyYJEhtWpaf66umVHiEvGMwZAH-jbavnHLhgILl4RGYs4yxJQWWPyQyUyBIl0-KYPA3hGgCUBPmEHIsCikJBPiM_1pP1ekBLV-OAZnCGrpo4fd9MA9JNZ0cTl6eu0RP6qAf0u60OSOve07W72v7-9v0D-qha3Rmki68j9mOgX7q42PQdPdVDvHEY6I0btjSmvv15-2tJPzuLEbnEdocxweiRftTdFT4jR7VuAj6_myfk07vV5XKdnF283ywXZ4kRuRAJS4FbU2UmV0UFNq8MN5rLGivQtmC15SLTOWotFUvRiApTKQ0XYGwmIQVxQl4ffHe-j5nDULYuGGwa3e0fKLkCrvJUKR7RV_-g1_3ou5guUpnMcinYnpofKOP7EDzW5c67VvupZFDuyyr3ZZUPZcWDl3e2Y9WifcDv24mAOgA3rsHpP3bl4u354q_5HzQpphg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956576312</pqid></control><display><type>article</type><title>Hydrated Eutectic Electrolyte Induced Bilayer Interphase for High‐Performance Aqueous Zn‐Ion Batteries with 100 °C Wide‐Temperature Range</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wan, Jiandong ; Wang, Rui ; Liu, Zixiang ; Zhang, Shilin ; Hao, Junnan ; Mao, Jianfeng ; Li, Hongbao ; Chao, Dongliang ; Zhang, Longhai ; Zhang, Chaofeng</creator><creatorcontrib>Wan, Jiandong ; Wang, Rui ; Liu, Zixiang ; Zhang, Shilin ; Hao, Junnan ; Mao, Jianfeng ; Li, Hongbao ; Chao, Dongliang ; Zhang, Longhai ; Zhang, Chaofeng</creatorcontrib><description>The practical implementation of aqueous zinc‐ion batteries (AZIBs) encounters challenges such as dendrite growth, parasitic reactions, and severe decay in battery performance under harsh environments. Here, a novel hydrated eutectic electrolyte (HEE) composed of Zn(ClO4)2·6H2O, ethylene glycol (EG), and InCl3 solution is introduced to effectively extend the lifespan of AZIBs over a wide temperature range from −50 to 50 °C. Molecular dynamics simulations and spectroscopy analysis demonstrate that the H2O molecules are confined within the liquid eutectic network through dual‐interaction, involving coordination with Zn2+ and hydrogen bonding with EG, thus weakening the activity of free water and extending the electrochemical window. Importantly, cryo‐transmission electron microscopy and spectroscopy techniques reveal that HEE in situ forms a zincophobic/zincophilic bilayer interphase by the dissociation‐reduction of eutectic molecules. Specifically, the zincophilic interphase reduces the energy barrier for Zn nucleation, promoting uniform Zn deposition, while the zincophobic interphase prevents active water from contacting the Zn surface, thus inhibiting the side reactions. Furthermore, the relationships between the structural evolution of the liquid eutectic network and interfacial chemistry at electrode/electrolyte interphase are further discussed in this work. The scalability of this design strategy can bring benefits to AZIBs operating over a wide temperature range. The practical implementation of aqueous zinc‐ion batteries (AZIBs) is hindered by challenges such as dendrite growth, parasitic reactions, and severe decay in harsh environments. A new‐type hydrated eutectic electrolyte is developed to in situ form a zincophobic/zincophilic bilayer interphase, thereby improving the reversibility of AZIBs over a wide temperature range from −50 to 50 °C.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202310623</identifier><identifier>PMID: 38088907</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>bilayer interphase ; Bonding strength ; Electrolytes ; Ethylene glycol ; hydrated eutectic electrolytes ; Hydrogen bonding ; Molecular dynamics ; Nucleation ; Water chemistry ; wide temperature range ; Zn anodes ; Zn‐ion batteries</subject><ispartof>Advanced materials (Weinheim), 2024-03, Vol.36 (11), p.e2310623-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3733-1402dcb5c798b0d7bc2ca26feb0ad81fd235a7eaa6914ec3be466c230cd560403</citedby><cites>FETCH-LOGICAL-c3733-1402dcb5c798b0d7bc2ca26feb0ad81fd235a7eaa6914ec3be466c230cd560403</cites><orcidid>0000-0001-6188-6886</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202310623$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202310623$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38088907$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wan, Jiandong</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Liu, Zixiang</creatorcontrib><creatorcontrib>Zhang, Shilin</creatorcontrib><creatorcontrib>Hao, Junnan</creatorcontrib><creatorcontrib>Mao, Jianfeng</creatorcontrib><creatorcontrib>Li, Hongbao</creatorcontrib><creatorcontrib>Chao, Dongliang</creatorcontrib><creatorcontrib>Zhang, Longhai</creatorcontrib><creatorcontrib>Zhang, Chaofeng</creatorcontrib><title>Hydrated Eutectic Electrolyte Induced Bilayer Interphase for High‐Performance Aqueous Zn‐Ion Batteries with 100 °C Wide‐Temperature Range</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>The practical implementation of aqueous zinc‐ion batteries (AZIBs) encounters challenges such as dendrite growth, parasitic reactions, and severe decay in battery performance under harsh environments. Here, a novel hydrated eutectic electrolyte (HEE) composed of Zn(ClO4)2·6H2O, ethylene glycol (EG), and InCl3 solution is introduced to effectively extend the lifespan of AZIBs over a wide temperature range from −50 to 50 °C. Molecular dynamics simulations and spectroscopy analysis demonstrate that the H2O molecules are confined within the liquid eutectic network through dual‐interaction, involving coordination with Zn2+ and hydrogen bonding with EG, thus weakening the activity of free water and extending the electrochemical window. Importantly, cryo‐transmission electron microscopy and spectroscopy techniques reveal that HEE in situ forms a zincophobic/zincophilic bilayer interphase by the dissociation‐reduction of eutectic molecules. Specifically, the zincophilic interphase reduces the energy barrier for Zn nucleation, promoting uniform Zn deposition, while the zincophobic interphase prevents active water from contacting the Zn surface, thus inhibiting the side reactions. Furthermore, the relationships between the structural evolution of the liquid eutectic network and interfacial chemistry at electrode/electrolyte interphase are further discussed in this work. The scalability of this design strategy can bring benefits to AZIBs operating over a wide temperature range. The practical implementation of aqueous zinc‐ion batteries (AZIBs) is hindered by challenges such as dendrite growth, parasitic reactions, and severe decay in harsh environments. A new‐type hydrated eutectic electrolyte is developed to in situ form a zincophobic/zincophilic bilayer interphase, thereby improving the reversibility of AZIBs over a wide temperature range from −50 to 50 °C.</description><subject>bilayer interphase</subject><subject>Bonding strength</subject><subject>Electrolytes</subject><subject>Ethylene glycol</subject><subject>hydrated eutectic electrolytes</subject><subject>Hydrogen bonding</subject><subject>Molecular dynamics</subject><subject>Nucleation</subject><subject>Water chemistry</subject><subject>wide temperature range</subject><subject>Zn anodes</subject><subject>Zn‐ion batteries</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkU1uFDEQhS1ERIbAliWyxIZND2W7291eToaBGSlREApCYtNy29UZR_0z2N2KescR4AYcgTPkKJwEjyYJEhtWpaf66umVHiEvGMwZAH-jbavnHLhgILl4RGYs4yxJQWWPyQyUyBIl0-KYPA3hGgCUBPmEHIsCikJBPiM_1pP1ekBLV-OAZnCGrpo4fd9MA9JNZ0cTl6eu0RP6qAf0u60OSOve07W72v7-9v0D-qha3Rmki68j9mOgX7q42PQdPdVDvHEY6I0btjSmvv15-2tJPzuLEbnEdocxweiRftTdFT4jR7VuAj6_myfk07vV5XKdnF283ywXZ4kRuRAJS4FbU2UmV0UFNq8MN5rLGivQtmC15SLTOWotFUvRiApTKQ0XYGwmIQVxQl4ffHe-j5nDULYuGGwa3e0fKLkCrvJUKR7RV_-g1_3ou5guUpnMcinYnpofKOP7EDzW5c67VvupZFDuyyr3ZZUPZcWDl3e2Y9WifcDv24mAOgA3rsHpP3bl4u354q_5HzQpphg</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Wan, Jiandong</creator><creator>Wang, Rui</creator><creator>Liu, Zixiang</creator><creator>Zhang, Shilin</creator><creator>Hao, Junnan</creator><creator>Mao, Jianfeng</creator><creator>Li, Hongbao</creator><creator>Chao, Dongliang</creator><creator>Zhang, Longhai</creator><creator>Zhang, Chaofeng</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6188-6886</orcidid></search><sort><creationdate>20240301</creationdate><title>Hydrated Eutectic Electrolyte Induced Bilayer Interphase for High‐Performance Aqueous Zn‐Ion Batteries with 100 °C Wide‐Temperature Range</title><author>Wan, Jiandong ; Wang, Rui ; Liu, Zixiang ; Zhang, Shilin ; Hao, Junnan ; Mao, Jianfeng ; Li, Hongbao ; Chao, Dongliang ; Zhang, Longhai ; Zhang, Chaofeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3733-1402dcb5c798b0d7bc2ca26feb0ad81fd235a7eaa6914ec3be466c230cd560403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>bilayer interphase</topic><topic>Bonding strength</topic><topic>Electrolytes</topic><topic>Ethylene glycol</topic><topic>hydrated eutectic electrolytes</topic><topic>Hydrogen bonding</topic><topic>Molecular dynamics</topic><topic>Nucleation</topic><topic>Water chemistry</topic><topic>wide temperature range</topic><topic>Zn anodes</topic><topic>Zn‐ion batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Jiandong</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Liu, Zixiang</creatorcontrib><creatorcontrib>Zhang, Shilin</creatorcontrib><creatorcontrib>Hao, Junnan</creatorcontrib><creatorcontrib>Mao, Jianfeng</creatorcontrib><creatorcontrib>Li, Hongbao</creatorcontrib><creatorcontrib>Chao, Dongliang</creatorcontrib><creatorcontrib>Zhang, Longhai</creatorcontrib><creatorcontrib>Zhang, Chaofeng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, Jiandong</au><au>Wang, Rui</au><au>Liu, Zixiang</au><au>Zhang, Shilin</au><au>Hao, Junnan</au><au>Mao, Jianfeng</au><au>Li, Hongbao</au><au>Chao, Dongliang</au><au>Zhang, Longhai</au><au>Zhang, Chaofeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrated Eutectic Electrolyte Induced Bilayer Interphase for High‐Performance Aqueous Zn‐Ion Batteries with 100 °C Wide‐Temperature Range</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>36</volume><issue>11</issue><spage>e2310623</spage><epage>n/a</epage><pages>e2310623-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The practical implementation of aqueous zinc‐ion batteries (AZIBs) encounters challenges such as dendrite growth, parasitic reactions, and severe decay in battery performance under harsh environments. Here, a novel hydrated eutectic electrolyte (HEE) composed of Zn(ClO4)2·6H2O, ethylene glycol (EG), and InCl3 solution is introduced to effectively extend the lifespan of AZIBs over a wide temperature range from −50 to 50 °C. Molecular dynamics simulations and spectroscopy analysis demonstrate that the H2O molecules are confined within the liquid eutectic network through dual‐interaction, involving coordination with Zn2+ and hydrogen bonding with EG, thus weakening the activity of free water and extending the electrochemical window. Importantly, cryo‐transmission electron microscopy and spectroscopy techniques reveal that HEE in situ forms a zincophobic/zincophilic bilayer interphase by the dissociation‐reduction of eutectic molecules. Specifically, the zincophilic interphase reduces the energy barrier for Zn nucleation, promoting uniform Zn deposition, while the zincophobic interphase prevents active water from contacting the Zn surface, thus inhibiting the side reactions. Furthermore, the relationships between the structural evolution of the liquid eutectic network and interfacial chemistry at electrode/electrolyte interphase are further discussed in this work. The scalability of this design strategy can bring benefits to AZIBs operating over a wide temperature range. The practical implementation of aqueous zinc‐ion batteries (AZIBs) is hindered by challenges such as dendrite growth, parasitic reactions, and severe decay in harsh environments. A new‐type hydrated eutectic electrolyte is developed to in situ form a zincophobic/zincophilic bilayer interphase, thereby improving the reversibility of AZIBs over a wide temperature range from −50 to 50 °C.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38088907</pmid><doi>10.1002/adma.202310623</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6188-6886</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-03, Vol.36 (11), p.e2310623-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2902974992
source Wiley Online Library Journals Frontfile Complete
subjects bilayer interphase
Bonding strength
Electrolytes
Ethylene glycol
hydrated eutectic electrolytes
Hydrogen bonding
Molecular dynamics
Nucleation
Water chemistry
wide temperature range
Zn anodes
Zn‐ion batteries
title Hydrated Eutectic Electrolyte Induced Bilayer Interphase for High‐Performance Aqueous Zn‐Ion Batteries with 100 °C Wide‐Temperature Range
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A09%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrated%20Eutectic%20Electrolyte%20Induced%20Bilayer%20Interphase%20for%20High%E2%80%90Performance%20Aqueous%20Zn%E2%80%90Ion%20Batteries%20with%20100%C2%A0%C2%B0C%20Wide%E2%80%90Temperature%20Range&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Wan,%20Jiandong&rft.date=2024-03-01&rft.volume=36&rft.issue=11&rft.spage=e2310623&rft.epage=n/a&rft.pages=e2310623-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202310623&rft_dat=%3Cproquest_cross%3E2902974992%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2956576312&rft_id=info:pmid/38088907&rfr_iscdi=true