Bioconversion of citrus waste into mucic acid by xylose-fermenting Saccharomyces cerevisiae
[Display omitted] •High-yield mucic acid production by genetically engineered Saccharomyces cerevisiae.•NAD+-dependent uronate dehydrogenase and xylose-metabolic pathway were expressed.•Xylose metabolism enables NAD+ regeneration for uronate dehydrogenase.•The highest productivity was demonstrated w...
Gespeichert in:
Veröffentlicht in: | Bioresource technology 2024-02, Vol.393, p.130158-130158, Article 130158 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 130158 |
---|---|
container_issue | |
container_start_page | 130158 |
container_title | Bioresource technology |
container_volume | 393 |
creator | Jeong, Deokyeol Park, Sujeong Evelina, Grace Kim, Suhyeung Park, Heeyoung Lee, Je Min Kim, Sun-Ki Kim, In Jung Oh, Eun Joong Kim, Soo Rin |
description | [Display omitted]
•High-yield mucic acid production by genetically engineered Saccharomyces cerevisiae.•NAD+-dependent uronate dehydrogenase and xylose-metabolic pathway were expressed.•Xylose metabolism enables NAD+ regeneration for uronate dehydrogenase.•The highest productivity was demonstrated with citrus peel waste.
Mucic acid holds promise as a platform chemical for bio-based nylon synthesis; however, its biological production encounters challenges including low yield and productivity. In this study, an efficient and high-yield method for mucic acid production was developed by employing genetically engineered Saccharomyces cerevisiae expressing the NAD+-dependent uronate dehydrogenase (udh) gene. To overcome the NAD+ dependency for the conversion of pectin to mucic acid, xylose was utilized as a co-substrate. Through optimization of the udh expression system, the engineered strain achieved a notable output, producing 20 g/L mucic acid with a highest reported productivity of 0.83 g/L-h and a theoretical yield of 0.18 g/g when processing pectin-containing citrus peel waste. These results suggest promising industrial applications for the biological production of mucic acid. Additionally, there is potential to establish a viable bioprocess by harnessing pectin-rich fruit waste alongside xylose-rich cellulosic biomass as raw materials. |
doi_str_mv | 10.1016/j.biortech.2023.130158 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2902972706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852423015869</els_id><sourcerecordid>2902972706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-8a20e4df238d74d29385a0ed6f684238d955405785a7bdce2bee5d7cc1af36b53</originalsourceid><addsrcrecordid>eNqFkEtv2zAQhIkiRe2k_QsGj7nI4UMiqVseSNoCBnpoe-qBoJarmoYlOqTkxv--MhznmtMCg5md3Y-QBWdLzri62SybENOAsF4KJuSSS8Yr84HMudGyELVWF2TOasUKU4lyRi5z3jDGJNfiE5lJwzSrdD0nf-5DhNjvMeUQexpbCmFIY6b_XB6Qhn6ItBshAHUQPG0O9OWwjRmLFlOH_RD6v_SnA1i7FLsDYKaACfchB4efycfWbTN-eZ1X5PfT46-Hb8Xqx9fvD3erAqQyQ2GcYFj6VkjjdelFLU3lGHrVKlMexbqqyunaSdWNBxQNYuU1AHetVE0lr8j1ae8uxecR82C7kAG3W9djHLMVNZuACM3UZFUnK6SYc8LW7lLoXDpYzuwRrN3YM1h7BGtPYKfg4rVjbDr0b7EzyclwezLg9Ok-YLIZAvaAPiSEwfoY3uv4DzGVjpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2902972706</pqid></control><display><type>article</type><title>Bioconversion of citrus waste into mucic acid by xylose-fermenting Saccharomyces cerevisiae</title><source>Access via ScienceDirect (Elsevier)</source><creator>Jeong, Deokyeol ; Park, Sujeong ; Evelina, Grace ; Kim, Suhyeung ; Park, Heeyoung ; Lee, Je Min ; Kim, Sun-Ki ; Kim, In Jung ; Oh, Eun Joong ; Kim, Soo Rin</creator><creatorcontrib>Jeong, Deokyeol ; Park, Sujeong ; Evelina, Grace ; Kim, Suhyeung ; Park, Heeyoung ; Lee, Je Min ; Kim, Sun-Ki ; Kim, In Jung ; Oh, Eun Joong ; Kim, Soo Rin</creatorcontrib><description>[Display omitted]
•High-yield mucic acid production by genetically engineered Saccharomyces cerevisiae.•NAD+-dependent uronate dehydrogenase and xylose-metabolic pathway were expressed.•Xylose metabolism enables NAD+ regeneration for uronate dehydrogenase.•The highest productivity was demonstrated with citrus peel waste.
Mucic acid holds promise as a platform chemical for bio-based nylon synthesis; however, its biological production encounters challenges including low yield and productivity. In this study, an efficient and high-yield method for mucic acid production was developed by employing genetically engineered Saccharomyces cerevisiae expressing the NAD+-dependent uronate dehydrogenase (udh) gene. To overcome the NAD+ dependency for the conversion of pectin to mucic acid, xylose was utilized as a co-substrate. Through optimization of the udh expression system, the engineered strain achieved a notable output, producing 20 g/L mucic acid with a highest reported productivity of 0.83 g/L-h and a theoretical yield of 0.18 g/g when processing pectin-containing citrus peel waste. These results suggest promising industrial applications for the biological production of mucic acid. Additionally, there is potential to establish a viable bioprocess by harnessing pectin-rich fruit waste alongside xylose-rich cellulosic biomass as raw materials.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2023.130158</identifier><identifier>PMID: 38070579</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>CRISPR/Cas9 ; Delta-integration strategy ; Fruit waste ; meso-galactarate ; Microbial bioconversion ; Pectin-rich biomass</subject><ispartof>Bioresource technology, 2024-02, Vol.393, p.130158-130158, Article 130158</ispartof><rights>2023 Elsevier Ltd</rights><rights>Copyright © 2023 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-8a20e4df238d74d29385a0ed6f684238d955405785a7bdce2bee5d7cc1af36b53</citedby><cites>FETCH-LOGICAL-c368t-8a20e4df238d74d29385a0ed6f684238d955405785a7bdce2bee5d7cc1af36b53</cites><orcidid>0000-0003-1463-4365 ; 0000-0001-6163-8962</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biortech.2023.130158$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38070579$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jeong, Deokyeol</creatorcontrib><creatorcontrib>Park, Sujeong</creatorcontrib><creatorcontrib>Evelina, Grace</creatorcontrib><creatorcontrib>Kim, Suhyeung</creatorcontrib><creatorcontrib>Park, Heeyoung</creatorcontrib><creatorcontrib>Lee, Je Min</creatorcontrib><creatorcontrib>Kim, Sun-Ki</creatorcontrib><creatorcontrib>Kim, In Jung</creatorcontrib><creatorcontrib>Oh, Eun Joong</creatorcontrib><creatorcontrib>Kim, Soo Rin</creatorcontrib><title>Bioconversion of citrus waste into mucic acid by xylose-fermenting Saccharomyces cerevisiae</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>[Display omitted]
•High-yield mucic acid production by genetically engineered Saccharomyces cerevisiae.•NAD+-dependent uronate dehydrogenase and xylose-metabolic pathway were expressed.•Xylose metabolism enables NAD+ regeneration for uronate dehydrogenase.•The highest productivity was demonstrated with citrus peel waste.
Mucic acid holds promise as a platform chemical for bio-based nylon synthesis; however, its biological production encounters challenges including low yield and productivity. In this study, an efficient and high-yield method for mucic acid production was developed by employing genetically engineered Saccharomyces cerevisiae expressing the NAD+-dependent uronate dehydrogenase (udh) gene. To overcome the NAD+ dependency for the conversion of pectin to mucic acid, xylose was utilized as a co-substrate. Through optimization of the udh expression system, the engineered strain achieved a notable output, producing 20 g/L mucic acid with a highest reported productivity of 0.83 g/L-h and a theoretical yield of 0.18 g/g when processing pectin-containing citrus peel waste. These results suggest promising industrial applications for the biological production of mucic acid. Additionally, there is potential to establish a viable bioprocess by harnessing pectin-rich fruit waste alongside xylose-rich cellulosic biomass as raw materials.</description><subject>CRISPR/Cas9</subject><subject>Delta-integration strategy</subject><subject>Fruit waste</subject><subject>meso-galactarate</subject><subject>Microbial bioconversion</subject><subject>Pectin-rich biomass</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkEtv2zAQhIkiRe2k_QsGj7nI4UMiqVseSNoCBnpoe-qBoJarmoYlOqTkxv--MhznmtMCg5md3Y-QBWdLzri62SybENOAsF4KJuSSS8Yr84HMudGyELVWF2TOasUKU4lyRi5z3jDGJNfiE5lJwzSrdD0nf-5DhNjvMeUQexpbCmFIY6b_XB6Qhn6ItBshAHUQPG0O9OWwjRmLFlOH_RD6v_SnA1i7FLsDYKaACfchB4efycfWbTN-eZ1X5PfT46-Hb8Xqx9fvD3erAqQyQ2GcYFj6VkjjdelFLU3lGHrVKlMexbqqyunaSdWNBxQNYuU1AHetVE0lr8j1ae8uxecR82C7kAG3W9djHLMVNZuACM3UZFUnK6SYc8LW7lLoXDpYzuwRrN3YM1h7BGtPYKfg4rVjbDr0b7EzyclwezLg9Ok-YLIZAvaAPiSEwfoY3uv4DzGVjpg</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Jeong, Deokyeol</creator><creator>Park, Sujeong</creator><creator>Evelina, Grace</creator><creator>Kim, Suhyeung</creator><creator>Park, Heeyoung</creator><creator>Lee, Je Min</creator><creator>Kim, Sun-Ki</creator><creator>Kim, In Jung</creator><creator>Oh, Eun Joong</creator><creator>Kim, Soo Rin</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1463-4365</orcidid><orcidid>https://orcid.org/0000-0001-6163-8962</orcidid></search><sort><creationdate>20240201</creationdate><title>Bioconversion of citrus waste into mucic acid by xylose-fermenting Saccharomyces cerevisiae</title><author>Jeong, Deokyeol ; Park, Sujeong ; Evelina, Grace ; Kim, Suhyeung ; Park, Heeyoung ; Lee, Je Min ; Kim, Sun-Ki ; Kim, In Jung ; Oh, Eun Joong ; Kim, Soo Rin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-8a20e4df238d74d29385a0ed6f684238d955405785a7bdce2bee5d7cc1af36b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CRISPR/Cas9</topic><topic>Delta-integration strategy</topic><topic>Fruit waste</topic><topic>meso-galactarate</topic><topic>Microbial bioconversion</topic><topic>Pectin-rich biomass</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeong, Deokyeol</creatorcontrib><creatorcontrib>Park, Sujeong</creatorcontrib><creatorcontrib>Evelina, Grace</creatorcontrib><creatorcontrib>Kim, Suhyeung</creatorcontrib><creatorcontrib>Park, Heeyoung</creatorcontrib><creatorcontrib>Lee, Je Min</creatorcontrib><creatorcontrib>Kim, Sun-Ki</creatorcontrib><creatorcontrib>Kim, In Jung</creatorcontrib><creatorcontrib>Oh, Eun Joong</creatorcontrib><creatorcontrib>Kim, Soo Rin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeong, Deokyeol</au><au>Park, Sujeong</au><au>Evelina, Grace</au><au>Kim, Suhyeung</au><au>Park, Heeyoung</au><au>Lee, Je Min</au><au>Kim, Sun-Ki</au><au>Kim, In Jung</au><au>Oh, Eun Joong</au><au>Kim, Soo Rin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioconversion of citrus waste into mucic acid by xylose-fermenting Saccharomyces cerevisiae</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>393</volume><spage>130158</spage><epage>130158</epage><pages>130158-130158</pages><artnum>130158</artnum><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>[Display omitted]
•High-yield mucic acid production by genetically engineered Saccharomyces cerevisiae.•NAD+-dependent uronate dehydrogenase and xylose-metabolic pathway were expressed.•Xylose metabolism enables NAD+ regeneration for uronate dehydrogenase.•The highest productivity was demonstrated with citrus peel waste.
Mucic acid holds promise as a platform chemical for bio-based nylon synthesis; however, its biological production encounters challenges including low yield and productivity. In this study, an efficient and high-yield method for mucic acid production was developed by employing genetically engineered Saccharomyces cerevisiae expressing the NAD+-dependent uronate dehydrogenase (udh) gene. To overcome the NAD+ dependency for the conversion of pectin to mucic acid, xylose was utilized as a co-substrate. Through optimization of the udh expression system, the engineered strain achieved a notable output, producing 20 g/L mucic acid with a highest reported productivity of 0.83 g/L-h and a theoretical yield of 0.18 g/g when processing pectin-containing citrus peel waste. These results suggest promising industrial applications for the biological production of mucic acid. Additionally, there is potential to establish a viable bioprocess by harnessing pectin-rich fruit waste alongside xylose-rich cellulosic biomass as raw materials.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>38070579</pmid><doi>10.1016/j.biortech.2023.130158</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1463-4365</orcidid><orcidid>https://orcid.org/0000-0001-6163-8962</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-8524 |
ispartof | Bioresource technology, 2024-02, Vol.393, p.130158-130158, Article 130158 |
issn | 0960-8524 1873-2976 |
language | eng |
recordid | cdi_proquest_miscellaneous_2902972706 |
source | Access via ScienceDirect (Elsevier) |
subjects | CRISPR/Cas9 Delta-integration strategy Fruit waste meso-galactarate Microbial bioconversion Pectin-rich biomass |
title | Bioconversion of citrus waste into mucic acid by xylose-fermenting Saccharomyces cerevisiae |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A45%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioconversion%20of%20citrus%20waste%20into%20mucic%20acid%20by%20xylose-fermenting%20Saccharomyces%20cerevisiae&rft.jtitle=Bioresource%20technology&rft.au=Jeong,%20Deokyeol&rft.date=2024-02-01&rft.volume=393&rft.spage=130158&rft.epage=130158&rft.pages=130158-130158&rft.artnum=130158&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2023.130158&rft_dat=%3Cproquest_cross%3E2902972706%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2902972706&rft_id=info:pmid/38070579&rft_els_id=S0960852423015869&rfr_iscdi=true |