Defect-Confinement Strategy for Constructing CuO Clusters on Carbon Nanotubes for Catalytic Oxidation of AsH3 at Room Temperature

The efficient removal of the highly toxic arsine gas (AsH3) from industrial tail gases under mild conditions remains a formidable challenge. In this study, we utilized the confinement effect of defective carbon nanotubes to fabricate a CuO cluster catalyst (CuO/ACNT), which exhibited a capacity much...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2024-01, Vol.58 (1), p.859-870
Hauptverfasser: Yang, Xinyu, Feng, Jiayu, Hao, Xingguang, Li, Zhao, Xu, Wenkai, Ma, Yixing, Sun, Xin, Li, Kai, Ning, Ping, Wang, Fei, Zhang, Changbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 870
container_issue 1
container_start_page 859
container_title Environmental science & technology
container_volume 58
creator Yang, Xinyu
Feng, Jiayu
Hao, Xingguang
Li, Zhao
Xu, Wenkai
Ma, Yixing
Sun, Xin
Li, Kai
Ning, Ping
Wang, Fei
Zhang, Changbin
description The efficient removal of the highly toxic arsine gas (AsH3) from industrial tail gases under mild conditions remains a formidable challenge. In this study, we utilized the confinement effect of defective carbon nanotubes to fabricate a CuO cluster catalyst (CuO/ACNT), which exhibited a capacity much higher than that of CuO supported on pristine multiwalled carbon nanotubes (MWCNT) (CuO/PCNT) for catalytically oxidizing AsH3 under ambient conditions. The experimental and theoretical results show that nitric acid steam treatment could induce MWCNT surface structural defects, which facilitated more stable anchoring of CuO and then improved the oxygen activation ability, therefore leading to excellent catalytic performance. Density functional theory (DFT) calculations revealed that the catalytic oxidation of AsH3 proceeded through stepwise dehydrogenation and subsequent recombination with oxygen to form As2O3 as the final product.
doi_str_mv 10.1021/acs.est.3c06741
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2902971281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2913707758</sourcerecordid><originalsourceid>FETCH-LOGICAL-a285t-9bed0e3f1d42c904660e5b5df4c059d9401d88d134f3618c86e5e41980c3bd5d3</originalsourceid><addsrcrecordid>eNqFkc1L9DAQxoMouH6cvQa8CNJ1pkna9Ch9_QJxwQ_wtqTJVCrdRpsU9Oh_bpYVXvDiaWDm9zzDzMPYEcIcIcczY8OcQpwLC0UpcYvNUOWQKa1wm80AUGSVKJ532V4IrwCQC9Az9vWPWrIxq_3QdgOtaIj8IY4m0ssnb_3I0yDEcbKxG154PS143U8h0hi4H3htxiaVOzP4ODUUNgoTTf8ZO8sXH50zsUuEb_l5uBbcRH7v_Yo_0uqN0pZppAO205o-0OFP3WdPlxeP9XV2u7i6qc9vM5NrFbOqIQckWnQytxXIogBSjXKttKAqV0lAp7VDIVtRoLa6IEUSKw1WNE45sc9ONr5vo3-f0qeWqy5Y6nszkJ_CUqASGgsp9Z9oXkFelZhrTOjxL_TVT-OQDkkUihLKUq0NTzdUCuk_gLBcJ7dcN9fKn-TENySHjV4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2913707758</pqid></control><display><type>article</type><title>Defect-Confinement Strategy for Constructing CuO Clusters on Carbon Nanotubes for Catalytic Oxidation of AsH3 at Room Temperature</title><source>American Chemical Society Journals</source><creator>Yang, Xinyu ; Feng, Jiayu ; Hao, Xingguang ; Li, Zhao ; Xu, Wenkai ; Ma, Yixing ; Sun, Xin ; Li, Kai ; Ning, Ping ; Wang, Fei ; Zhang, Changbin</creator><creatorcontrib>Yang, Xinyu ; Feng, Jiayu ; Hao, Xingguang ; Li, Zhao ; Xu, Wenkai ; Ma, Yixing ; Sun, Xin ; Li, Kai ; Ning, Ping ; Wang, Fei ; Zhang, Changbin</creatorcontrib><description>The efficient removal of the highly toxic arsine gas (AsH3) from industrial tail gases under mild conditions remains a formidable challenge. In this study, we utilized the confinement effect of defective carbon nanotubes to fabricate a CuO cluster catalyst (CuO/ACNT), which exhibited a capacity much higher than that of CuO supported on pristine multiwalled carbon nanotubes (MWCNT) (CuO/PCNT) for catalytically oxidizing AsH3 under ambient conditions. The experimental and theoretical results show that nitric acid steam treatment could induce MWCNT surface structural defects, which facilitated more stable anchoring of CuO and then improved the oxygen activation ability, therefore leading to excellent catalytic performance. Density functional theory (DFT) calculations revealed that the catalytic oxidation of AsH3 proceeded through stepwise dehydrogenation and subsequent recombination with oxygen to form As2O3 as the final product.</description><identifier>ISSN: 0013-936X</identifier><identifier>ISSN: 1520-5851</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.3c06741</identifier><language>eng</language><publisher>Easton: American Chemical Society</publisher><subject>ambient temperature ; Arsine ; Carbon ; carbon nanotubes ; Catalysts ; catalytic activity ; Confinement ; Defects ; Dehydrogenation ; Density functional theory ; environmental science ; Multi wall carbon nanotubes ; Nanotechnology ; Nanotubes ; Nitric acid ; Oxidation ; Oxygen ; Physico-Chemical Treatment and Resource Recovery ; Room temperature ; steam ; toxicity</subject><ispartof>Environmental science &amp; technology, 2024-01, Vol.58 (1), p.859-870</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Jan 9, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2124-0620 ; 0000-0001-5862-4770 ; 0000-0002-4364-9956</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.3c06741$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.3c06741$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Yang, Xinyu</creatorcontrib><creatorcontrib>Feng, Jiayu</creatorcontrib><creatorcontrib>Hao, Xingguang</creatorcontrib><creatorcontrib>Li, Zhao</creatorcontrib><creatorcontrib>Xu, Wenkai</creatorcontrib><creatorcontrib>Ma, Yixing</creatorcontrib><creatorcontrib>Sun, Xin</creatorcontrib><creatorcontrib>Li, Kai</creatorcontrib><creatorcontrib>Ning, Ping</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Zhang, Changbin</creatorcontrib><title>Defect-Confinement Strategy for Constructing CuO Clusters on Carbon Nanotubes for Catalytic Oxidation of AsH3 at Room Temperature</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>The efficient removal of the highly toxic arsine gas (AsH3) from industrial tail gases under mild conditions remains a formidable challenge. In this study, we utilized the confinement effect of defective carbon nanotubes to fabricate a CuO cluster catalyst (CuO/ACNT), which exhibited a capacity much higher than that of CuO supported on pristine multiwalled carbon nanotubes (MWCNT) (CuO/PCNT) for catalytically oxidizing AsH3 under ambient conditions. The experimental and theoretical results show that nitric acid steam treatment could induce MWCNT surface structural defects, which facilitated more stable anchoring of CuO and then improved the oxygen activation ability, therefore leading to excellent catalytic performance. Density functional theory (DFT) calculations revealed that the catalytic oxidation of AsH3 proceeded through stepwise dehydrogenation and subsequent recombination with oxygen to form As2O3 as the final product.</description><subject>ambient temperature</subject><subject>Arsine</subject><subject>Carbon</subject><subject>carbon nanotubes</subject><subject>Catalysts</subject><subject>catalytic activity</subject><subject>Confinement</subject><subject>Defects</subject><subject>Dehydrogenation</subject><subject>Density functional theory</subject><subject>environmental science</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Nitric acid</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Physico-Chemical Treatment and Resource Recovery</subject><subject>Room temperature</subject><subject>steam</subject><subject>toxicity</subject><issn>0013-936X</issn><issn>1520-5851</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc1L9DAQxoMouH6cvQa8CNJ1pkna9Ch9_QJxwQ_wtqTJVCrdRpsU9Oh_bpYVXvDiaWDm9zzDzMPYEcIcIcczY8OcQpwLC0UpcYvNUOWQKa1wm80AUGSVKJ532V4IrwCQC9Az9vWPWrIxq_3QdgOtaIj8IY4m0ssnb_3I0yDEcbKxG154PS143U8h0hi4H3htxiaVOzP4ODUUNgoTTf8ZO8sXH50zsUuEb_l5uBbcRH7v_Yo_0uqN0pZppAO205o-0OFP3WdPlxeP9XV2u7i6qc9vM5NrFbOqIQckWnQytxXIogBSjXKttKAqV0lAp7VDIVtRoLa6IEUSKw1WNE45sc9ONr5vo3-f0qeWqy5Y6nszkJ_CUqASGgsp9Z9oXkFelZhrTOjxL_TVT-OQDkkUihLKUq0NTzdUCuk_gLBcJ7dcN9fKn-TENySHjV4</recordid><startdate>20240109</startdate><enddate>20240109</enddate><creator>Yang, Xinyu</creator><creator>Feng, Jiayu</creator><creator>Hao, Xingguang</creator><creator>Li, Zhao</creator><creator>Xu, Wenkai</creator><creator>Ma, Yixing</creator><creator>Sun, Xin</creator><creator>Li, Kai</creator><creator>Ning, Ping</creator><creator>Wang, Fei</creator><creator>Zhang, Changbin</creator><general>American Chemical Society</general><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-2124-0620</orcidid><orcidid>https://orcid.org/0000-0001-5862-4770</orcidid><orcidid>https://orcid.org/0000-0002-4364-9956</orcidid></search><sort><creationdate>20240109</creationdate><title>Defect-Confinement Strategy for Constructing CuO Clusters on Carbon Nanotubes for Catalytic Oxidation of AsH3 at Room Temperature</title><author>Yang, Xinyu ; Feng, Jiayu ; Hao, Xingguang ; Li, Zhao ; Xu, Wenkai ; Ma, Yixing ; Sun, Xin ; Li, Kai ; Ning, Ping ; Wang, Fei ; Zhang, Changbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a285t-9bed0e3f1d42c904660e5b5df4c059d9401d88d134f3618c86e5e41980c3bd5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>ambient temperature</topic><topic>Arsine</topic><topic>Carbon</topic><topic>carbon nanotubes</topic><topic>Catalysts</topic><topic>catalytic activity</topic><topic>Confinement</topic><topic>Defects</topic><topic>Dehydrogenation</topic><topic>Density functional theory</topic><topic>environmental science</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Nitric acid</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Physico-Chemical Treatment and Resource Recovery</topic><topic>Room temperature</topic><topic>steam</topic><topic>toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Xinyu</creatorcontrib><creatorcontrib>Feng, Jiayu</creatorcontrib><creatorcontrib>Hao, Xingguang</creatorcontrib><creatorcontrib>Li, Zhao</creatorcontrib><creatorcontrib>Xu, Wenkai</creatorcontrib><creatorcontrib>Ma, Yixing</creatorcontrib><creatorcontrib>Sun, Xin</creatorcontrib><creatorcontrib>Li, Kai</creatorcontrib><creatorcontrib>Ning, Ping</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Zhang, Changbin</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Xinyu</au><au>Feng, Jiayu</au><au>Hao, Xingguang</au><au>Li, Zhao</au><au>Xu, Wenkai</au><au>Ma, Yixing</au><au>Sun, Xin</au><au>Li, Kai</au><au>Ning, Ping</au><au>Wang, Fei</au><au>Zhang, Changbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defect-Confinement Strategy for Constructing CuO Clusters on Carbon Nanotubes for Catalytic Oxidation of AsH3 at Room Temperature</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2024-01-09</date><risdate>2024</risdate><volume>58</volume><issue>1</issue><spage>859</spage><epage>870</epage><pages>859-870</pages><issn>0013-936X</issn><issn>1520-5851</issn><eissn>1520-5851</eissn><abstract>The efficient removal of the highly toxic arsine gas (AsH3) from industrial tail gases under mild conditions remains a formidable challenge. In this study, we utilized the confinement effect of defective carbon nanotubes to fabricate a CuO cluster catalyst (CuO/ACNT), which exhibited a capacity much higher than that of CuO supported on pristine multiwalled carbon nanotubes (MWCNT) (CuO/PCNT) for catalytically oxidizing AsH3 under ambient conditions. The experimental and theoretical results show that nitric acid steam treatment could induce MWCNT surface structural defects, which facilitated more stable anchoring of CuO and then improved the oxygen activation ability, therefore leading to excellent catalytic performance. Density functional theory (DFT) calculations revealed that the catalytic oxidation of AsH3 proceeded through stepwise dehydrogenation and subsequent recombination with oxygen to form As2O3 as the final product.</abstract><cop>Easton</cop><pub>American Chemical Society</pub><doi>10.1021/acs.est.3c06741</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2124-0620</orcidid><orcidid>https://orcid.org/0000-0001-5862-4770</orcidid><orcidid>https://orcid.org/0000-0002-4364-9956</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2024-01, Vol.58 (1), p.859-870
issn 0013-936X
1520-5851
1520-5851
language eng
recordid cdi_proquest_miscellaneous_2902971281
source American Chemical Society Journals
subjects ambient temperature
Arsine
Carbon
carbon nanotubes
Catalysts
catalytic activity
Confinement
Defects
Dehydrogenation
Density functional theory
environmental science
Multi wall carbon nanotubes
Nanotechnology
Nanotubes
Nitric acid
Oxidation
Oxygen
Physico-Chemical Treatment and Resource Recovery
Room temperature
steam
toxicity
title Defect-Confinement Strategy for Constructing CuO Clusters on Carbon Nanotubes for Catalytic Oxidation of AsH3 at Room Temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T16%3A08%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defect-Confinement%20Strategy%20for%20Constructing%20CuO%20Clusters%20on%20Carbon%20Nanotubes%20for%20Catalytic%20Oxidation%20of%20AsH3%20at%20Room%20Temperature&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Yang,%20Xinyu&rft.date=2024-01-09&rft.volume=58&rft.issue=1&rft.spage=859&rft.epage=870&rft.pages=859-870&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.3c06741&rft_dat=%3Cproquest_acs_j%3E2913707758%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2913707758&rft_id=info:pmid/&rfr_iscdi=true