Defect-Confinement Strategy for Constructing CuO Clusters on Carbon Nanotubes for Catalytic Oxidation of AsH3 at Room Temperature
The efficient removal of the highly toxic arsine gas (AsH3) from industrial tail gases under mild conditions remains a formidable challenge. In this study, we utilized the confinement effect of defective carbon nanotubes to fabricate a CuO cluster catalyst (CuO/ACNT), which exhibited a capacity much...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2024-01, Vol.58 (1), p.859-870 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 870 |
---|---|
container_issue | 1 |
container_start_page | 859 |
container_title | Environmental science & technology |
container_volume | 58 |
creator | Yang, Xinyu Feng, Jiayu Hao, Xingguang Li, Zhao Xu, Wenkai Ma, Yixing Sun, Xin Li, Kai Ning, Ping Wang, Fei Zhang, Changbin |
description | The efficient removal of the highly toxic arsine gas (AsH3) from industrial tail gases under mild conditions remains a formidable challenge. In this study, we utilized the confinement effect of defective carbon nanotubes to fabricate a CuO cluster catalyst (CuO/ACNT), which exhibited a capacity much higher than that of CuO supported on pristine multiwalled carbon nanotubes (MWCNT) (CuO/PCNT) for catalytically oxidizing AsH3 under ambient conditions. The experimental and theoretical results show that nitric acid steam treatment could induce MWCNT surface structural defects, which facilitated more stable anchoring of CuO and then improved the oxygen activation ability, therefore leading to excellent catalytic performance. Density functional theory (DFT) calculations revealed that the catalytic oxidation of AsH3 proceeded through stepwise dehydrogenation and subsequent recombination with oxygen to form As2O3 as the final product. |
doi_str_mv | 10.1021/acs.est.3c06741 |
format | Article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2902971281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2913707758</sourcerecordid><originalsourceid>FETCH-LOGICAL-a285t-9bed0e3f1d42c904660e5b5df4c059d9401d88d134f3618c86e5e41980c3bd5d3</originalsourceid><addsrcrecordid>eNqFkc1L9DAQxoMouH6cvQa8CNJ1pkna9Ch9_QJxwQ_wtqTJVCrdRpsU9Oh_bpYVXvDiaWDm9zzDzMPYEcIcIcczY8OcQpwLC0UpcYvNUOWQKa1wm80AUGSVKJ532V4IrwCQC9Az9vWPWrIxq_3QdgOtaIj8IY4m0ssnb_3I0yDEcbKxG154PS143U8h0hi4H3htxiaVOzP4ODUUNgoTTf8ZO8sXH50zsUuEb_l5uBbcRH7v_Yo_0uqN0pZppAO205o-0OFP3WdPlxeP9XV2u7i6qc9vM5NrFbOqIQckWnQytxXIogBSjXKttKAqV0lAp7VDIVtRoLa6IEUSKw1WNE45sc9ONr5vo3-f0qeWqy5Y6nszkJ_CUqASGgsp9Z9oXkFelZhrTOjxL_TVT-OQDkkUihLKUq0NTzdUCuk_gLBcJ7dcN9fKn-TENySHjV4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2913707758</pqid></control><display><type>article</type><title>Defect-Confinement Strategy for Constructing CuO Clusters on Carbon Nanotubes for Catalytic Oxidation of AsH3 at Room Temperature</title><source>American Chemical Society Journals</source><creator>Yang, Xinyu ; Feng, Jiayu ; Hao, Xingguang ; Li, Zhao ; Xu, Wenkai ; Ma, Yixing ; Sun, Xin ; Li, Kai ; Ning, Ping ; Wang, Fei ; Zhang, Changbin</creator><creatorcontrib>Yang, Xinyu ; Feng, Jiayu ; Hao, Xingguang ; Li, Zhao ; Xu, Wenkai ; Ma, Yixing ; Sun, Xin ; Li, Kai ; Ning, Ping ; Wang, Fei ; Zhang, Changbin</creatorcontrib><description>The efficient removal of the highly toxic arsine gas (AsH3) from industrial tail gases under mild conditions remains a formidable challenge. In this study, we utilized the confinement effect of defective carbon nanotubes to fabricate a CuO cluster catalyst (CuO/ACNT), which exhibited a capacity much higher than that of CuO supported on pristine multiwalled carbon nanotubes (MWCNT) (CuO/PCNT) for catalytically oxidizing AsH3 under ambient conditions. The experimental and theoretical results show that nitric acid steam treatment could induce MWCNT surface structural defects, which facilitated more stable anchoring of CuO and then improved the oxygen activation ability, therefore leading to excellent catalytic performance. Density functional theory (DFT) calculations revealed that the catalytic oxidation of AsH3 proceeded through stepwise dehydrogenation and subsequent recombination with oxygen to form As2O3 as the final product.</description><identifier>ISSN: 0013-936X</identifier><identifier>ISSN: 1520-5851</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.3c06741</identifier><language>eng</language><publisher>Easton: American Chemical Society</publisher><subject>ambient temperature ; Arsine ; Carbon ; carbon nanotubes ; Catalysts ; catalytic activity ; Confinement ; Defects ; Dehydrogenation ; Density functional theory ; environmental science ; Multi wall carbon nanotubes ; Nanotechnology ; Nanotubes ; Nitric acid ; Oxidation ; Oxygen ; Physico-Chemical Treatment and Resource Recovery ; Room temperature ; steam ; toxicity</subject><ispartof>Environmental science & technology, 2024-01, Vol.58 (1), p.859-870</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Jan 9, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2124-0620 ; 0000-0001-5862-4770 ; 0000-0002-4364-9956</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.3c06741$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.3c06741$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Yang, Xinyu</creatorcontrib><creatorcontrib>Feng, Jiayu</creatorcontrib><creatorcontrib>Hao, Xingguang</creatorcontrib><creatorcontrib>Li, Zhao</creatorcontrib><creatorcontrib>Xu, Wenkai</creatorcontrib><creatorcontrib>Ma, Yixing</creatorcontrib><creatorcontrib>Sun, Xin</creatorcontrib><creatorcontrib>Li, Kai</creatorcontrib><creatorcontrib>Ning, Ping</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Zhang, Changbin</creatorcontrib><title>Defect-Confinement Strategy for Constructing CuO Clusters on Carbon Nanotubes for Catalytic Oxidation of AsH3 at Room Temperature</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>The efficient removal of the highly toxic arsine gas (AsH3) from industrial tail gases under mild conditions remains a formidable challenge. In this study, we utilized the confinement effect of defective carbon nanotubes to fabricate a CuO cluster catalyst (CuO/ACNT), which exhibited a capacity much higher than that of CuO supported on pristine multiwalled carbon nanotubes (MWCNT) (CuO/PCNT) for catalytically oxidizing AsH3 under ambient conditions. The experimental and theoretical results show that nitric acid steam treatment could induce MWCNT surface structural defects, which facilitated more stable anchoring of CuO and then improved the oxygen activation ability, therefore leading to excellent catalytic performance. Density functional theory (DFT) calculations revealed that the catalytic oxidation of AsH3 proceeded through stepwise dehydrogenation and subsequent recombination with oxygen to form As2O3 as the final product.</description><subject>ambient temperature</subject><subject>Arsine</subject><subject>Carbon</subject><subject>carbon nanotubes</subject><subject>Catalysts</subject><subject>catalytic activity</subject><subject>Confinement</subject><subject>Defects</subject><subject>Dehydrogenation</subject><subject>Density functional theory</subject><subject>environmental science</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Nitric acid</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Physico-Chemical Treatment and Resource Recovery</subject><subject>Room temperature</subject><subject>steam</subject><subject>toxicity</subject><issn>0013-936X</issn><issn>1520-5851</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc1L9DAQxoMouH6cvQa8CNJ1pkna9Ch9_QJxwQ_wtqTJVCrdRpsU9Oh_bpYVXvDiaWDm9zzDzMPYEcIcIcczY8OcQpwLC0UpcYvNUOWQKa1wm80AUGSVKJ532V4IrwCQC9Az9vWPWrIxq_3QdgOtaIj8IY4m0ssnb_3I0yDEcbKxG154PS143U8h0hi4H3htxiaVOzP4ODUUNgoTTf8ZO8sXH50zsUuEb_l5uBbcRH7v_Yo_0uqN0pZppAO205o-0OFP3WdPlxeP9XV2u7i6qc9vM5NrFbOqIQckWnQytxXIogBSjXKttKAqV0lAp7VDIVtRoLa6IEUSKw1WNE45sc9ONr5vo3-f0qeWqy5Y6nszkJ_CUqASGgsp9Z9oXkFelZhrTOjxL_TVT-OQDkkUihLKUq0NTzdUCuk_gLBcJ7dcN9fKn-TENySHjV4</recordid><startdate>20240109</startdate><enddate>20240109</enddate><creator>Yang, Xinyu</creator><creator>Feng, Jiayu</creator><creator>Hao, Xingguang</creator><creator>Li, Zhao</creator><creator>Xu, Wenkai</creator><creator>Ma, Yixing</creator><creator>Sun, Xin</creator><creator>Li, Kai</creator><creator>Ning, Ping</creator><creator>Wang, Fei</creator><creator>Zhang, Changbin</creator><general>American Chemical Society</general><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-2124-0620</orcidid><orcidid>https://orcid.org/0000-0001-5862-4770</orcidid><orcidid>https://orcid.org/0000-0002-4364-9956</orcidid></search><sort><creationdate>20240109</creationdate><title>Defect-Confinement Strategy for Constructing CuO Clusters on Carbon Nanotubes for Catalytic Oxidation of AsH3 at Room Temperature</title><author>Yang, Xinyu ; Feng, Jiayu ; Hao, Xingguang ; Li, Zhao ; Xu, Wenkai ; Ma, Yixing ; Sun, Xin ; Li, Kai ; Ning, Ping ; Wang, Fei ; Zhang, Changbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a285t-9bed0e3f1d42c904660e5b5df4c059d9401d88d134f3618c86e5e41980c3bd5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>ambient temperature</topic><topic>Arsine</topic><topic>Carbon</topic><topic>carbon nanotubes</topic><topic>Catalysts</topic><topic>catalytic activity</topic><topic>Confinement</topic><topic>Defects</topic><topic>Dehydrogenation</topic><topic>Density functional theory</topic><topic>environmental science</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Nitric acid</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Physico-Chemical Treatment and Resource Recovery</topic><topic>Room temperature</topic><topic>steam</topic><topic>toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Xinyu</creatorcontrib><creatorcontrib>Feng, Jiayu</creatorcontrib><creatorcontrib>Hao, Xingguang</creatorcontrib><creatorcontrib>Li, Zhao</creatorcontrib><creatorcontrib>Xu, Wenkai</creatorcontrib><creatorcontrib>Ma, Yixing</creatorcontrib><creatorcontrib>Sun, Xin</creatorcontrib><creatorcontrib>Li, Kai</creatorcontrib><creatorcontrib>Ning, Ping</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Zhang, Changbin</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Xinyu</au><au>Feng, Jiayu</au><au>Hao, Xingguang</au><au>Li, Zhao</au><au>Xu, Wenkai</au><au>Ma, Yixing</au><au>Sun, Xin</au><au>Li, Kai</au><au>Ning, Ping</au><au>Wang, Fei</au><au>Zhang, Changbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defect-Confinement Strategy for Constructing CuO Clusters on Carbon Nanotubes for Catalytic Oxidation of AsH3 at Room Temperature</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2024-01-09</date><risdate>2024</risdate><volume>58</volume><issue>1</issue><spage>859</spage><epage>870</epage><pages>859-870</pages><issn>0013-936X</issn><issn>1520-5851</issn><eissn>1520-5851</eissn><abstract>The efficient removal of the highly toxic arsine gas (AsH3) from industrial tail gases under mild conditions remains a formidable challenge. In this study, we utilized the confinement effect of defective carbon nanotubes to fabricate a CuO cluster catalyst (CuO/ACNT), which exhibited a capacity much higher than that of CuO supported on pristine multiwalled carbon nanotubes (MWCNT) (CuO/PCNT) for catalytically oxidizing AsH3 under ambient conditions. The experimental and theoretical results show that nitric acid steam treatment could induce MWCNT surface structural defects, which facilitated more stable anchoring of CuO and then improved the oxygen activation ability, therefore leading to excellent catalytic performance. Density functional theory (DFT) calculations revealed that the catalytic oxidation of AsH3 proceeded through stepwise dehydrogenation and subsequent recombination with oxygen to form As2O3 as the final product.</abstract><cop>Easton</cop><pub>American Chemical Society</pub><doi>10.1021/acs.est.3c06741</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2124-0620</orcidid><orcidid>https://orcid.org/0000-0001-5862-4770</orcidid><orcidid>https://orcid.org/0000-0002-4364-9956</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2024-01, Vol.58 (1), p.859-870 |
issn | 0013-936X 1520-5851 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_2902971281 |
source | American Chemical Society Journals |
subjects | ambient temperature Arsine Carbon carbon nanotubes Catalysts catalytic activity Confinement Defects Dehydrogenation Density functional theory environmental science Multi wall carbon nanotubes Nanotechnology Nanotubes Nitric acid Oxidation Oxygen Physico-Chemical Treatment and Resource Recovery Room temperature steam toxicity |
title | Defect-Confinement Strategy for Constructing CuO Clusters on Carbon Nanotubes for Catalytic Oxidation of AsH3 at Room Temperature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T16%3A08%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defect-Confinement%20Strategy%20for%20Constructing%20CuO%20Clusters%20on%20Carbon%20Nanotubes%20for%20Catalytic%20Oxidation%20of%20AsH3%20at%20Room%20Temperature&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Yang,%20Xinyu&rft.date=2024-01-09&rft.volume=58&rft.issue=1&rft.spage=859&rft.epage=870&rft.pages=859-870&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.3c06741&rft_dat=%3Cproquest_acs_j%3E2913707758%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2913707758&rft_id=info:pmid/&rfr_iscdi=true |