CFATransUnet: Channel-wise cross fusion attention and transformer for 2D medical image segmentation
Medical image segmentation faces current challenges in effectively extracting and fusing long-distance and local semantic information, as well as mitigating or eliminating semantic gaps during the encoding and decoding process. To alleviate the above two problems, we propose a new U-shaped network s...
Gespeichert in:
Veröffentlicht in: | Computers in biology and medicine 2024-01, Vol.168, p.107803-107803, Article 107803 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Medical image segmentation faces current challenges in effectively extracting and fusing long-distance and local semantic information, as well as mitigating or eliminating semantic gaps during the encoding and decoding process. To alleviate the above two problems, we propose a new U-shaped network structure, called CFATransUnet, with Transformer and CNN blocks as the backbone network, equipped with Channel-wise Cross Fusion Attention and Transformer (CCFAT) module, containing Channel-wise Cross Fusion Transformer (CCFT) and Channel-wise Cross Fusion Attention (CCFA). Specifically, we use a Transformer and CNN blocks to construct the encoder and decoder for adequate extraction and fusion of long-range and local semantic features. The CCFT module utilizes the self-attention mechanism to reintegrate semantic information from different stages into cross-level global features to reduce the semantic asymmetry between features at different levels. The CCFA module adaptively acquires the importance of each feature channel based on a global perspective in a network learning manner, enhancing effective information grasping and suppressing non-important features to mitigate semantic gaps. The combination of CCFT and CCFA can guide the effective fusion of different levels of features more powerfully with a global perspective. The consistent architecture of the encoder and decoder also alleviates the semantic gap. Experimental results suggest that the proposed CFATransUnet achieves state-of-the-art performance on four datasets. The code is available at https://github.com/CPU0808066/CFATransUnet. |
---|---|
ISSN: | 0010-4825 1879-0534 |
DOI: | 10.1016/j.compbiomed.2023.107803 |