Free Water MR Imaging of White Matter Microstructural Changes is a Sensitive Marker of Amyloid Positivity in Alzheimer's Disease

Background Extracellular free water (FW) resulting from white matter degeneration limits the sensitivity of diffusion tensor imaging (DTI) in predicting Alzheimer's disease (AD). Purpose To evaluate the sensitivity of FW‐DTI in detecting white matter microstructural changes in AD. To validate t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance imaging 2024-10, Vol.60 (4), p.1458-1469
Hauptverfasser: Sun, Xuan, Zhao, Cui, Chen, Si‐Yu, Chang, Yan, Han, Yu‐Liang, Li, Ke, Sun, Hong‐Mei, Wang, Zhen‐Fu, Liang, Ying, Jia, Jian‐Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1469
container_issue 4
container_start_page 1458
container_title Journal of magnetic resonance imaging
container_volume 60
creator Sun, Xuan
Zhao, Cui
Chen, Si‐Yu
Chang, Yan
Han, Yu‐Liang
Li, Ke
Sun, Hong‐Mei
Wang, Zhen‐Fu
Liang, Ying
Jia, Jian‐Jun
description Background Extracellular free water (FW) resulting from white matter degeneration limits the sensitivity of diffusion tensor imaging (DTI) in predicting Alzheimer's disease (AD). Purpose To evaluate the sensitivity of FW‐DTI in detecting white matter microstructural changes in AD. To validate the effectiveness of FW‐DTI indices to predict amyloid‐beta (Aβ) positivity in mild cognitive impairment (MCI) subtypes. Study Type Retrospective. Population Thirty‐eight Aβ‐negative cognitively healthy (CH) controls (68.74 ± 8.28 years old, 55% female), 15 Aβ‐negative MCI patients (MCI‐n) (68.87 ± 8.83 years old, 60% female), 29 Aβ‐positive MCI patients (MCI‐p) (73.03 ± 7.05 years old, 52% female), and 29 Aβ‐positive AD patients (72.93 ± 9.11 years old, 55% female). Field Strength/Sequence 3.0T; DTI, T1‐weighted, T2‐weighted, T2 star‐weighted angiography, and Aβ PET (18F‐florbetaben or 11C‐PIB). Assessment FW‐corrected and standard diffusion indices were analyzed using trace‐based spatial statistics. Area under the curve (AUC) in distinguishing MCI subtypes were compared using support vector machine (SVM). Statistical Tests Chi‐squared test, one‐way analysis of covariance, general linear regression analyses, nonparametric permutation tests, partial Pearson's correlation, receiver operating characteristic curve analysis, and linear SVM. A P value
doi_str_mv 10.1002/jmri.29189
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2902968488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2902968488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3579-f474546229c45660329d08468e7cc2b9b07a02b880b11191e533fd39af3293db3</originalsourceid><addsrcrecordid>eNp90U9P2zAYBnALDQFju-wDTJZ22DQp7LUdJ_ax6sYoomJimzhaTvKmdZc_YCdD5cRHx21hBw472dL7ex9Zfgh5x-CEAfAvq9a7E66Z0nvkiEnOEy5V9ireQYqEKcgPyesQVgCgdSoPyKFQcVEydUQeTj0ivbYDejq_orPWLly3oH1Nr5duQDq3w3bkSt-HwY_lMHrb0OnSdgsM1AVq6U_sghvc3432f6KO25N23fSuoj_67cgNa-o6Omnul-ha9B8D_eoC2oBvyH5tm4Bvn85j8vv026_pWXJx-X02nVwkpZC5Tuo0T2Waca7LVGYZCK4rUGmmMC9LXugCcgu8UAoKxphmKIWoK6FtHaWoCnFMPu1yb3x_O2IYTOtCiU1jO-zHYLgGrjOVKhXphxd01Y--i68zgnHFpAQQUX3eqc3PBI-1ufGutX5tGJhNL2bTi9n2EvH7p8ixaLH6R5-LiIDtwJ1rcP2fKHM-v5rtQh8ByZuW8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128155003</pqid></control><display><type>article</type><title>Free Water MR Imaging of White Matter Microstructural Changes is a Sensitive Marker of Amyloid Positivity in Alzheimer's Disease</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Sun, Xuan ; Zhao, Cui ; Chen, Si‐Yu ; Chang, Yan ; Han, Yu‐Liang ; Li, Ke ; Sun, Hong‐Mei ; Wang, Zhen‐Fu ; Liang, Ying ; Jia, Jian‐Jun</creator><creatorcontrib>Sun, Xuan ; Zhao, Cui ; Chen, Si‐Yu ; Chang, Yan ; Han, Yu‐Liang ; Li, Ke ; Sun, Hong‐Mei ; Wang, Zhen‐Fu ; Liang, Ying ; Jia, Jian‐Jun</creatorcontrib><description>Background Extracellular free water (FW) resulting from white matter degeneration limits the sensitivity of diffusion tensor imaging (DTI) in predicting Alzheimer's disease (AD). Purpose To evaluate the sensitivity of FW‐DTI in detecting white matter microstructural changes in AD. To validate the effectiveness of FW‐DTI indices to predict amyloid‐beta (Aβ) positivity in mild cognitive impairment (MCI) subtypes. Study Type Retrospective. Population Thirty‐eight Aβ‐negative cognitively healthy (CH) controls (68.74 ± 8.28 years old, 55% female), 15 Aβ‐negative MCI patients (MCI‐n) (68.87 ± 8.83 years old, 60% female), 29 Aβ‐positive MCI patients (MCI‐p) (73.03 ± 7.05 years old, 52% female), and 29 Aβ‐positive AD patients (72.93 ± 9.11 years old, 55% female). Field Strength/Sequence 3.0T; DTI, T1‐weighted, T2‐weighted, T2 star‐weighted angiography, and Aβ PET (18F‐florbetaben or 11C‐PIB). Assessment FW‐corrected and standard diffusion indices were analyzed using trace‐based spatial statistics. Area under the curve (AUC) in distinguishing MCI subtypes were compared using support vector machine (SVM). Statistical Tests Chi‐squared test, one‐way analysis of covariance, general linear regression analyses, nonparametric permutation tests, partial Pearson's correlation, receiver operating characteristic curve analysis, and linear SVM. A P value &lt;0.05 was considered statistically significant. Results Compared with CH/MCI‐n/MCI‐p, AD showed significant change in tissue compartment indices of FW‐DTI. No difference was found in the FW index among pair‐wise group comparisons (the minimum FWE‐corrected P = 0.114). There was a significant association between FW‐DTI indices and memory and visuospatial function. The SVM classifier with tissue radial diffusivity as an input feature had the best classification performance of MCI subtypes (AUC = 0.91), and the classifying accuracy of FW‐DTI was all over 89.89%. Data Conclusion FW‐DTI indices prove to be potential biomarkers of AD. The classification of MCI subtypes based on SVM and FW‐DTI indices has good accuracy and could help early diagnosis. Evidence Level 4 Technical Efficacy Stage 2</description><identifier>ISSN: 1053-1807</identifier><identifier>ISSN: 1522-2586</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.29189</identifier><identifier>PMID: 38100518</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Aged ; Aged, 80 and over ; Alzheimer Disease - diagnostic imaging ; Alzheimer's disease ; Amyloid beta-Peptides - metabolism ; Angiography ; Biomarkers ; Biomarkers - metabolism ; Brain - diagnostic imaging ; Classification ; Cognitive ability ; Cognitive Dysfunction - diagnostic imaging ; Degeneration ; diffusion tensor imaging ; Diffusion Tensor Imaging - methods ; Effectiveness ; Female ; Females ; Field strength ; free water ; Humans ; Magnetic resonance imaging ; Male ; Medical imaging ; Middle Aged ; Neurodegenerative diseases ; Permutations ; Population studies ; Positron-Emission Tomography ; Regression analysis ; Reproducibility of Results ; Retrospective Studies ; Sensitivity analysis ; Sensitivity and Specificity ; Spatial memory ; Statistical analysis ; Statistical tests ; Substantia alba ; support vector machine ; Support vector machines ; Tensors ; Water - chemistry ; white matter ; White Matter - diagnostic imaging ; β-Amyloid</subject><ispartof>Journal of magnetic resonance imaging, 2024-10, Vol.60 (4), p.1458-1469</ispartof><rights>2023 International Society for Magnetic Resonance in Medicine.</rights><rights>2024 International Society for Magnetic Resonance in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3579-f474546229c45660329d08468e7cc2b9b07a02b880b11191e533fd39af3293db3</citedby><cites>FETCH-LOGICAL-c3579-f474546229c45660329d08468e7cc2b9b07a02b880b11191e533fd39af3293db3</cites><orcidid>0000-0002-0747-4132</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjmri.29189$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjmri.29189$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38100518$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Xuan</creatorcontrib><creatorcontrib>Zhao, Cui</creatorcontrib><creatorcontrib>Chen, Si‐Yu</creatorcontrib><creatorcontrib>Chang, Yan</creatorcontrib><creatorcontrib>Han, Yu‐Liang</creatorcontrib><creatorcontrib>Li, Ke</creatorcontrib><creatorcontrib>Sun, Hong‐Mei</creatorcontrib><creatorcontrib>Wang, Zhen‐Fu</creatorcontrib><creatorcontrib>Liang, Ying</creatorcontrib><creatorcontrib>Jia, Jian‐Jun</creatorcontrib><title>Free Water MR Imaging of White Matter Microstructural Changes is a Sensitive Marker of Amyloid Positivity in Alzheimer's Disease</title><title>Journal of magnetic resonance imaging</title><addtitle>J Magn Reson Imaging</addtitle><description>Background Extracellular free water (FW) resulting from white matter degeneration limits the sensitivity of diffusion tensor imaging (DTI) in predicting Alzheimer's disease (AD). Purpose To evaluate the sensitivity of FW‐DTI in detecting white matter microstructural changes in AD. To validate the effectiveness of FW‐DTI indices to predict amyloid‐beta (Aβ) positivity in mild cognitive impairment (MCI) subtypes. Study Type Retrospective. Population Thirty‐eight Aβ‐negative cognitively healthy (CH) controls (68.74 ± 8.28 years old, 55% female), 15 Aβ‐negative MCI patients (MCI‐n) (68.87 ± 8.83 years old, 60% female), 29 Aβ‐positive MCI patients (MCI‐p) (73.03 ± 7.05 years old, 52% female), and 29 Aβ‐positive AD patients (72.93 ± 9.11 years old, 55% female). Field Strength/Sequence 3.0T; DTI, T1‐weighted, T2‐weighted, T2 star‐weighted angiography, and Aβ PET (18F‐florbetaben or 11C‐PIB). Assessment FW‐corrected and standard diffusion indices were analyzed using trace‐based spatial statistics. Area under the curve (AUC) in distinguishing MCI subtypes were compared using support vector machine (SVM). Statistical Tests Chi‐squared test, one‐way analysis of covariance, general linear regression analyses, nonparametric permutation tests, partial Pearson's correlation, receiver operating characteristic curve analysis, and linear SVM. A P value &lt;0.05 was considered statistically significant. Results Compared with CH/MCI‐n/MCI‐p, AD showed significant change in tissue compartment indices of FW‐DTI. No difference was found in the FW index among pair‐wise group comparisons (the minimum FWE‐corrected P = 0.114). There was a significant association between FW‐DTI indices and memory and visuospatial function. The SVM classifier with tissue radial diffusivity as an input feature had the best classification performance of MCI subtypes (AUC = 0.91), and the classifying accuracy of FW‐DTI was all over 89.89%. Data Conclusion FW‐DTI indices prove to be potential biomarkers of AD. The classification of MCI subtypes based on SVM and FW‐DTI indices has good accuracy and could help early diagnosis. Evidence Level 4 Technical Efficacy Stage 2</description><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Alzheimer Disease - diagnostic imaging</subject><subject>Alzheimer's disease</subject><subject>Amyloid beta-Peptides - metabolism</subject><subject>Angiography</subject><subject>Biomarkers</subject><subject>Biomarkers - metabolism</subject><subject>Brain - diagnostic imaging</subject><subject>Classification</subject><subject>Cognitive ability</subject><subject>Cognitive Dysfunction - diagnostic imaging</subject><subject>Degeneration</subject><subject>diffusion tensor imaging</subject><subject>Diffusion Tensor Imaging - methods</subject><subject>Effectiveness</subject><subject>Female</subject><subject>Females</subject><subject>Field strength</subject><subject>free water</subject><subject>Humans</subject><subject>Magnetic resonance imaging</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Middle Aged</subject><subject>Neurodegenerative diseases</subject><subject>Permutations</subject><subject>Population studies</subject><subject>Positron-Emission Tomography</subject><subject>Regression analysis</subject><subject>Reproducibility of Results</subject><subject>Retrospective Studies</subject><subject>Sensitivity analysis</subject><subject>Sensitivity and Specificity</subject><subject>Spatial memory</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>Substantia alba</subject><subject>support vector machine</subject><subject>Support vector machines</subject><subject>Tensors</subject><subject>Water - chemistry</subject><subject>white matter</subject><subject>White Matter - diagnostic imaging</subject><subject>β-Amyloid</subject><issn>1053-1807</issn><issn>1522-2586</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90U9P2zAYBnALDQFju-wDTJZ22DQp7LUdJ_ax6sYoomJimzhaTvKmdZc_YCdD5cRHx21hBw472dL7ex9Zfgh5x-CEAfAvq9a7E66Z0nvkiEnOEy5V9ireQYqEKcgPyesQVgCgdSoPyKFQcVEydUQeTj0ivbYDejq_orPWLly3oH1Nr5duQDq3w3bkSt-HwY_lMHrb0OnSdgsM1AVq6U_sghvc3432f6KO25N23fSuoj_67cgNa-o6Omnul-ha9B8D_eoC2oBvyH5tm4Bvn85j8vv026_pWXJx-X02nVwkpZC5Tuo0T2Waca7LVGYZCK4rUGmmMC9LXugCcgu8UAoKxphmKIWoK6FtHaWoCnFMPu1yb3x_O2IYTOtCiU1jO-zHYLgGrjOVKhXphxd01Y--i68zgnHFpAQQUX3eqc3PBI-1ufGutX5tGJhNL2bTi9n2EvH7p8ixaLH6R5-LiIDtwJ1rcP2fKHM-v5rtQh8ByZuW8w</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Sun, Xuan</creator><creator>Zhao, Cui</creator><creator>Chen, Si‐Yu</creator><creator>Chang, Yan</creator><creator>Han, Yu‐Liang</creator><creator>Li, Ke</creator><creator>Sun, Hong‐Mei</creator><creator>Wang, Zhen‐Fu</creator><creator>Liang, Ying</creator><creator>Jia, Jian‐Jun</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0747-4132</orcidid></search><sort><creationdate>202410</creationdate><title>Free Water MR Imaging of White Matter Microstructural Changes is a Sensitive Marker of Amyloid Positivity in Alzheimer's Disease</title><author>Sun, Xuan ; Zhao, Cui ; Chen, Si‐Yu ; Chang, Yan ; Han, Yu‐Liang ; Li, Ke ; Sun, Hong‐Mei ; Wang, Zhen‐Fu ; Liang, Ying ; Jia, Jian‐Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3579-f474546229c45660329d08468e7cc2b9b07a02b880b11191e533fd39af3293db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Alzheimer Disease - diagnostic imaging</topic><topic>Alzheimer's disease</topic><topic>Amyloid beta-Peptides - metabolism</topic><topic>Angiography</topic><topic>Biomarkers</topic><topic>Biomarkers - metabolism</topic><topic>Brain - diagnostic imaging</topic><topic>Classification</topic><topic>Cognitive ability</topic><topic>Cognitive Dysfunction - diagnostic imaging</topic><topic>Degeneration</topic><topic>diffusion tensor imaging</topic><topic>Diffusion Tensor Imaging - methods</topic><topic>Effectiveness</topic><topic>Female</topic><topic>Females</topic><topic>Field strength</topic><topic>free water</topic><topic>Humans</topic><topic>Magnetic resonance imaging</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Middle Aged</topic><topic>Neurodegenerative diseases</topic><topic>Permutations</topic><topic>Population studies</topic><topic>Positron-Emission Tomography</topic><topic>Regression analysis</topic><topic>Reproducibility of Results</topic><topic>Retrospective Studies</topic><topic>Sensitivity analysis</topic><topic>Sensitivity and Specificity</topic><topic>Spatial memory</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>Substantia alba</topic><topic>support vector machine</topic><topic>Support vector machines</topic><topic>Tensors</topic><topic>Water - chemistry</topic><topic>white matter</topic><topic>White Matter - diagnostic imaging</topic><topic>β-Amyloid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Xuan</creatorcontrib><creatorcontrib>Zhao, Cui</creatorcontrib><creatorcontrib>Chen, Si‐Yu</creatorcontrib><creatorcontrib>Chang, Yan</creatorcontrib><creatorcontrib>Han, Yu‐Liang</creatorcontrib><creatorcontrib>Li, Ke</creatorcontrib><creatorcontrib>Sun, Hong‐Mei</creatorcontrib><creatorcontrib>Wang, Zhen‐Fu</creatorcontrib><creatorcontrib>Liang, Ying</creatorcontrib><creatorcontrib>Jia, Jian‐Jun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Xuan</au><au>Zhao, Cui</au><au>Chen, Si‐Yu</au><au>Chang, Yan</au><au>Han, Yu‐Liang</au><au>Li, Ke</au><au>Sun, Hong‐Mei</au><au>Wang, Zhen‐Fu</au><au>Liang, Ying</au><au>Jia, Jian‐Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Free Water MR Imaging of White Matter Microstructural Changes is a Sensitive Marker of Amyloid Positivity in Alzheimer's Disease</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J Magn Reson Imaging</addtitle><date>2024-10</date><risdate>2024</risdate><volume>60</volume><issue>4</issue><spage>1458</spage><epage>1469</epage><pages>1458-1469</pages><issn>1053-1807</issn><issn>1522-2586</issn><eissn>1522-2586</eissn><abstract>Background Extracellular free water (FW) resulting from white matter degeneration limits the sensitivity of diffusion tensor imaging (DTI) in predicting Alzheimer's disease (AD). Purpose To evaluate the sensitivity of FW‐DTI in detecting white matter microstructural changes in AD. To validate the effectiveness of FW‐DTI indices to predict amyloid‐beta (Aβ) positivity in mild cognitive impairment (MCI) subtypes. Study Type Retrospective. Population Thirty‐eight Aβ‐negative cognitively healthy (CH) controls (68.74 ± 8.28 years old, 55% female), 15 Aβ‐negative MCI patients (MCI‐n) (68.87 ± 8.83 years old, 60% female), 29 Aβ‐positive MCI patients (MCI‐p) (73.03 ± 7.05 years old, 52% female), and 29 Aβ‐positive AD patients (72.93 ± 9.11 years old, 55% female). Field Strength/Sequence 3.0T; DTI, T1‐weighted, T2‐weighted, T2 star‐weighted angiography, and Aβ PET (18F‐florbetaben or 11C‐PIB). Assessment FW‐corrected and standard diffusion indices were analyzed using trace‐based spatial statistics. Area under the curve (AUC) in distinguishing MCI subtypes were compared using support vector machine (SVM). Statistical Tests Chi‐squared test, one‐way analysis of covariance, general linear regression analyses, nonparametric permutation tests, partial Pearson's correlation, receiver operating characteristic curve analysis, and linear SVM. A P value &lt;0.05 was considered statistically significant. Results Compared with CH/MCI‐n/MCI‐p, AD showed significant change in tissue compartment indices of FW‐DTI. No difference was found in the FW index among pair‐wise group comparisons (the minimum FWE‐corrected P = 0.114). There was a significant association between FW‐DTI indices and memory and visuospatial function. The SVM classifier with tissue radial diffusivity as an input feature had the best classification performance of MCI subtypes (AUC = 0.91), and the classifying accuracy of FW‐DTI was all over 89.89%. Data Conclusion FW‐DTI indices prove to be potential biomarkers of AD. The classification of MCI subtypes based on SVM and FW‐DTI indices has good accuracy and could help early diagnosis. Evidence Level 4 Technical Efficacy Stage 2</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>38100518</pmid><doi>10.1002/jmri.29189</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0747-4132</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1053-1807
ispartof Journal of magnetic resonance imaging, 2024-10, Vol.60 (4), p.1458-1469
issn 1053-1807
1522-2586
1522-2586
language eng
recordid cdi_proquest_miscellaneous_2902968488
source MEDLINE; Wiley Online Library All Journals
subjects Aged
Aged, 80 and over
Alzheimer Disease - diagnostic imaging
Alzheimer's disease
Amyloid beta-Peptides - metabolism
Angiography
Biomarkers
Biomarkers - metabolism
Brain - diagnostic imaging
Classification
Cognitive ability
Cognitive Dysfunction - diagnostic imaging
Degeneration
diffusion tensor imaging
Diffusion Tensor Imaging - methods
Effectiveness
Female
Females
Field strength
free water
Humans
Magnetic resonance imaging
Male
Medical imaging
Middle Aged
Neurodegenerative diseases
Permutations
Population studies
Positron-Emission Tomography
Regression analysis
Reproducibility of Results
Retrospective Studies
Sensitivity analysis
Sensitivity and Specificity
Spatial memory
Statistical analysis
Statistical tests
Substantia alba
support vector machine
Support vector machines
Tensors
Water - chemistry
white matter
White Matter - diagnostic imaging
β-Amyloid
title Free Water MR Imaging of White Matter Microstructural Changes is a Sensitive Marker of Amyloid Positivity in Alzheimer's Disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A53%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Free%20Water%20MR%20Imaging%20of%20White%20Matter%20Microstructural%20Changes%20is%20a%20Sensitive%20Marker%20of%20Amyloid%20Positivity%20in%20Alzheimer's%20Disease&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Sun,%20Xuan&rft.date=2024-10&rft.volume=60&rft.issue=4&rft.spage=1458&rft.epage=1469&rft.pages=1458-1469&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.29189&rft_dat=%3Cproquest_cross%3E2902968488%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128155003&rft_id=info:pmid/38100518&rfr_iscdi=true