Mixtures of t$$ t $$ factor analysers with censored responses and external covariates: An application to educational data from Peru

Analysing data from educational tests allows governments to make decisions for improving the quality of life of individuals in a society. One of the key responsibilities of statisticians is to develop models that provide decision‐makers with pertinent information about the latent process that educat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:British journal of mathematical & statistical psychology 2024-05, Vol.77 (2), p.316-336
Hauptverfasser: Wang, Wan‐Lun, Castro, Luis M., Li, Huei‐Jyun, Lin, Tsung‐I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 336
container_issue 2
container_start_page 316
container_title British journal of mathematical & statistical psychology
container_volume 77
creator Wang, Wan‐Lun
Castro, Luis M.
Li, Huei‐Jyun
Lin, Tsung‐I
description Analysing data from educational tests allows governments to make decisions for improving the quality of life of individuals in a society. One of the key responsibilities of statisticians is to develop models that provide decision‐makers with pertinent information about the latent process that educational tests seek to represent. Mixtures of t$$ t $$ factor analysers (MtFA) have emerged as a powerful device for model‐based clustering and classification of high‐dimensional data containing one or several groups of observations with fatter tails or anomalous outliers. This paper considers an extension of MtFA for robust clustering of censored data, referred to as the MtFAC model, by incorporating external covariates. The enhanced flexibility of including covariates in MtFAC enables cluster‐specific multivariate regression analysis of dependent variables with censored responses arising from upper and/or lower detection limits of experimental equipment. An alternating expectation conditional maximization (AECM) algorithm is developed for maximum likelihood estimation of the proposed model. Two simulation experiments are conducted to examine the effectiveness of the techniques presented. Furthermore, the proposed methodology is applied to Peruvian data from the 2007 Early Grade Reading Assessment, and the results obtained from the analysis provide new insights regarding the reading skills of Peruvian students.
doi_str_mv 10.1111/bmsp.12329
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2902967017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2902967017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1619-70291bcca207b4e96ab349debb8e7601a92700e7be299fc50213089b011783933</originalsourceid><addsrcrecordid>eNp90c9r3iAYB3ApG-27bpf-AUNYD2OQ9lGTGHfryn5BSwvbzqLmCU1JYqpm7XvePz7fpduhh3lQhI_fB_kScsTghOV1asc4nzAuuNojGw5lWTSCyWdkAwCyYAz4AXkR4y0A4xXU--RANKAqIcSG_LrsH9ISMFLf0XR8TBPNW2dc8oGayQzbiCHS-z7dUIdT9AFbmvnsp5gfmaml-JAwZEmd_2lCbxLG9_Rsomaeh96Z1PuJJk-xXdZLlq1JhnbBj_Qaw_KSPO_MEPHV43lIfnz6-P38S3Fx9fnr-dlF4VjNVCGBK2adMxykLVHVxopStWhtg7IGZhSXACgtcqU6VwFnAhplgTHZCCXEIXm75s7B3y0Ykx776HAYzIR-iZqrPKGWwGSmb57QW7_sPhm1AFHWZVU1ZVbvVuWCjzFgp-fQjyZsNQO9q0bvqtF_qsn49WPkYkds_9G_XWTAVnDfD7j9T5T-cPnteg39DX5HmHY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3034645584</pqid></control><display><type>article</type><title>Mixtures of t$$ t $$ factor analysers with censored responses and external covariates: An application to educational data from Peru</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Wan‐Lun ; Castro, Luis M. ; Li, Huei‐Jyun ; Lin, Tsung‐I</creator><creatorcontrib>Wang, Wan‐Lun ; Castro, Luis M. ; Li, Huei‐Jyun ; Lin, Tsung‐I</creatorcontrib><description>Analysing data from educational tests allows governments to make decisions for improving the quality of life of individuals in a society. One of the key responsibilities of statisticians is to develop models that provide decision‐makers with pertinent information about the latent process that educational tests seek to represent. Mixtures of t$$ t $$ factor analysers (MtFA) have emerged as a powerful device for model‐based clustering and classification of high‐dimensional data containing one or several groups of observations with fatter tails or anomalous outliers. This paper considers an extension of MtFA for robust clustering of censored data, referred to as the MtFAC model, by incorporating external covariates. The enhanced flexibility of including covariates in MtFAC enables cluster‐specific multivariate regression analysis of dependent variables with censored responses arising from upper and/or lower detection limits of experimental equipment. An alternating expectation conditional maximization (AECM) algorithm is developed for maximum likelihood estimation of the proposed model. Two simulation experiments are conducted to examine the effectiveness of the techniques presented. Furthermore, the proposed methodology is applied to Peruvian data from the 2007 Early Grade Reading Assessment, and the results obtained from the analysis provide new insights regarding the reading skills of Peruvian students.</description><identifier>ISSN: 0007-1102</identifier><identifier>EISSN: 2044-8317</identifier><identifier>DOI: 10.1111/bmsp.12329</identifier><identifier>PMID: 38095333</identifier><language>eng</language><publisher>England: British Psychological Society</publisher><subject>AECM algorithm ; Algorithms ; censored data ; Clustering ; Computer Simulation ; Data analysis ; Decision analysis ; Dependent variables ; Education ; Educational evaluation ; Educational tests &amp; measurements ; factor analysis ; Humans ; Likelihood Functions ; Maximum likelihood estimation ; Mixtures ; Multivariate Analysis ; outliers ; Outliers (statistics) ; Peru ; Quality of Life ; Regression analysis ; truncated multivariate t distribution</subject><ispartof>British journal of mathematical &amp; statistical psychology, 2024-05, Vol.77 (2), p.316-336</ispartof><rights>2023 British Psychological Society.</rights><rights>Copyright © 2024 The British Psychological Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1619-70291bcca207b4e96ab349debb8e7601a92700e7be299fc50213089b011783933</cites><orcidid>0000-0001-7249-5207 ; 0000-0002-3992-1128 ; 0000-0002-0344-7954</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fbmsp.12329$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fbmsp.12329$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38095333$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Wan‐Lun</creatorcontrib><creatorcontrib>Castro, Luis M.</creatorcontrib><creatorcontrib>Li, Huei‐Jyun</creatorcontrib><creatorcontrib>Lin, Tsung‐I</creatorcontrib><title>Mixtures of t$$ t $$ factor analysers with censored responses and external covariates: An application to educational data from Peru</title><title>British journal of mathematical &amp; statistical psychology</title><addtitle>Br J Math Stat Psychol</addtitle><description>Analysing data from educational tests allows governments to make decisions for improving the quality of life of individuals in a society. One of the key responsibilities of statisticians is to develop models that provide decision‐makers with pertinent information about the latent process that educational tests seek to represent. Mixtures of t$$ t $$ factor analysers (MtFA) have emerged as a powerful device for model‐based clustering and classification of high‐dimensional data containing one or several groups of observations with fatter tails or anomalous outliers. This paper considers an extension of MtFA for robust clustering of censored data, referred to as the MtFAC model, by incorporating external covariates. The enhanced flexibility of including covariates in MtFAC enables cluster‐specific multivariate regression analysis of dependent variables with censored responses arising from upper and/or lower detection limits of experimental equipment. An alternating expectation conditional maximization (AECM) algorithm is developed for maximum likelihood estimation of the proposed model. Two simulation experiments are conducted to examine the effectiveness of the techniques presented. Furthermore, the proposed methodology is applied to Peruvian data from the 2007 Early Grade Reading Assessment, and the results obtained from the analysis provide new insights regarding the reading skills of Peruvian students.</description><subject>AECM algorithm</subject><subject>Algorithms</subject><subject>censored data</subject><subject>Clustering</subject><subject>Computer Simulation</subject><subject>Data analysis</subject><subject>Decision analysis</subject><subject>Dependent variables</subject><subject>Education</subject><subject>Educational evaluation</subject><subject>Educational tests &amp; measurements</subject><subject>factor analysis</subject><subject>Humans</subject><subject>Likelihood Functions</subject><subject>Maximum likelihood estimation</subject><subject>Mixtures</subject><subject>Multivariate Analysis</subject><subject>outliers</subject><subject>Outliers (statistics)</subject><subject>Peru</subject><subject>Quality of Life</subject><subject>Regression analysis</subject><subject>truncated multivariate t distribution</subject><issn>0007-1102</issn><issn>2044-8317</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90c9r3iAYB3ApG-27bpf-AUNYD2OQ9lGTGHfryn5BSwvbzqLmCU1JYqpm7XvePz7fpduhh3lQhI_fB_kScsTghOV1asc4nzAuuNojGw5lWTSCyWdkAwCyYAz4AXkR4y0A4xXU--RANKAqIcSG_LrsH9ISMFLf0XR8TBPNW2dc8oGayQzbiCHS-z7dUIdT9AFbmvnsp5gfmaml-JAwZEmd_2lCbxLG9_Rsomaeh96Z1PuJJk-xXdZLlq1JhnbBj_Qaw_KSPO_MEPHV43lIfnz6-P38S3Fx9fnr-dlF4VjNVCGBK2adMxykLVHVxopStWhtg7IGZhSXACgtcqU6VwFnAhplgTHZCCXEIXm75s7B3y0Ykx776HAYzIR-iZqrPKGWwGSmb57QW7_sPhm1AFHWZVU1ZVbvVuWCjzFgp-fQjyZsNQO9q0bvqtF_qsn49WPkYkds_9G_XWTAVnDfD7j9T5T-cPnteg39DX5HmHY</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Wang, Wan‐Lun</creator><creator>Castro, Luis M.</creator><creator>Li, Huei‐Jyun</creator><creator>Lin, Tsung‐I</creator><general>British Psychological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7249-5207</orcidid><orcidid>https://orcid.org/0000-0002-3992-1128</orcidid><orcidid>https://orcid.org/0000-0002-0344-7954</orcidid></search><sort><creationdate>202405</creationdate><title>Mixtures of t$$ t $$ factor analysers with censored responses and external covariates: An application to educational data from Peru</title><author>Wang, Wan‐Lun ; Castro, Luis M. ; Li, Huei‐Jyun ; Lin, Tsung‐I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1619-70291bcca207b4e96ab349debb8e7601a92700e7be299fc50213089b011783933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>AECM algorithm</topic><topic>Algorithms</topic><topic>censored data</topic><topic>Clustering</topic><topic>Computer Simulation</topic><topic>Data analysis</topic><topic>Decision analysis</topic><topic>Dependent variables</topic><topic>Education</topic><topic>Educational evaluation</topic><topic>Educational tests &amp; measurements</topic><topic>factor analysis</topic><topic>Humans</topic><topic>Likelihood Functions</topic><topic>Maximum likelihood estimation</topic><topic>Mixtures</topic><topic>Multivariate Analysis</topic><topic>outliers</topic><topic>Outliers (statistics)</topic><topic>Peru</topic><topic>Quality of Life</topic><topic>Regression analysis</topic><topic>truncated multivariate t distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Wan‐Lun</creatorcontrib><creatorcontrib>Castro, Luis M.</creatorcontrib><creatorcontrib>Li, Huei‐Jyun</creatorcontrib><creatorcontrib>Lin, Tsung‐I</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>British journal of mathematical &amp; statistical psychology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Wan‐Lun</au><au>Castro, Luis M.</au><au>Li, Huei‐Jyun</au><au>Lin, Tsung‐I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixtures of t$$ t $$ factor analysers with censored responses and external covariates: An application to educational data from Peru</atitle><jtitle>British journal of mathematical &amp; statistical psychology</jtitle><addtitle>Br J Math Stat Psychol</addtitle><date>2024-05</date><risdate>2024</risdate><volume>77</volume><issue>2</issue><spage>316</spage><epage>336</epage><pages>316-336</pages><issn>0007-1102</issn><eissn>2044-8317</eissn><abstract>Analysing data from educational tests allows governments to make decisions for improving the quality of life of individuals in a society. One of the key responsibilities of statisticians is to develop models that provide decision‐makers with pertinent information about the latent process that educational tests seek to represent. Mixtures of t$$ t $$ factor analysers (MtFA) have emerged as a powerful device for model‐based clustering and classification of high‐dimensional data containing one or several groups of observations with fatter tails or anomalous outliers. This paper considers an extension of MtFA for robust clustering of censored data, referred to as the MtFAC model, by incorporating external covariates. The enhanced flexibility of including covariates in MtFAC enables cluster‐specific multivariate regression analysis of dependent variables with censored responses arising from upper and/or lower detection limits of experimental equipment. An alternating expectation conditional maximization (AECM) algorithm is developed for maximum likelihood estimation of the proposed model. Two simulation experiments are conducted to examine the effectiveness of the techniques presented. Furthermore, the proposed methodology is applied to Peruvian data from the 2007 Early Grade Reading Assessment, and the results obtained from the analysis provide new insights regarding the reading skills of Peruvian students.</abstract><cop>England</cop><pub>British Psychological Society</pub><pmid>38095333</pmid><doi>10.1111/bmsp.12329</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-7249-5207</orcidid><orcidid>https://orcid.org/0000-0002-3992-1128</orcidid><orcidid>https://orcid.org/0000-0002-0344-7954</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0007-1102
ispartof British journal of mathematical & statistical psychology, 2024-05, Vol.77 (2), p.316-336
issn 0007-1102
2044-8317
language eng
recordid cdi_proquest_miscellaneous_2902967017
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects AECM algorithm
Algorithms
censored data
Clustering
Computer Simulation
Data analysis
Decision analysis
Dependent variables
Education
Educational evaluation
Educational tests & measurements
factor analysis
Humans
Likelihood Functions
Maximum likelihood estimation
Mixtures
Multivariate Analysis
outliers
Outliers (statistics)
Peru
Quality of Life
Regression analysis
truncated multivariate t distribution
title Mixtures of t$$ t $$ factor analysers with censored responses and external covariates: An application to educational data from Peru
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A41%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixtures%20of%20t$$%20t%20$$%20factor%20analysers%20with%20censored%20responses%20and%20external%20covariates:%20An%20application%20to%20educational%20data%20from%20Peru&rft.jtitle=British%20journal%20of%20mathematical%20&%20statistical%20psychology&rft.au=Wang,%20Wan%E2%80%90Lun&rft.date=2024-05&rft.volume=77&rft.issue=2&rft.spage=316&rft.epage=336&rft.pages=316-336&rft.issn=0007-1102&rft.eissn=2044-8317&rft_id=info:doi/10.1111/bmsp.12329&rft_dat=%3Cproquest_cross%3E2902967017%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3034645584&rft_id=info:pmid/38095333&rfr_iscdi=true