Distinguishing Molecular Mechanical Action from Photothermal and Photodynamic Behavior

Molecular motors (MM) are molecular machines, or nanomachines, that rotate unidirectionally upon photostimulation and perform mechanical work on their environment. In the last several years, it has been shown that the photomechanical action of MM can be used to permeabilize lipid bilayers, thereby k...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-02, Vol.36 (7), p.e2306669-n/a
Hauptverfasser: Beckham, Jacob L., Bradford, Thomas S., Ayala‐Orozco, Ciceron, Santos, Ana L., Arnold, Dallin, Venrooy, Alexis R., García‐López, Víctor, Pal, Robert, Tour, James M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 7
container_start_page e2306669
container_title Advanced materials (Weinheim)
container_volume 36
creator Beckham, Jacob L.
Bradford, Thomas S.
Ayala‐Orozco, Ciceron
Santos, Ana L.
Arnold, Dallin
Venrooy, Alexis R.
García‐López, Víctor
Pal, Robert
Tour, James M.
description Molecular motors (MM) are molecular machines, or nanomachines, that rotate unidirectionally upon photostimulation and perform mechanical work on their environment. In the last several years, it has been shown that the photomechanical action of MM can be used to permeabilize lipid bilayers, thereby killing cancer cells and pathogenic microorganisms and controlling cell signaling. The work contributes to a growing acknowledgement that the molecular actuation characteristic of these systems is useful for various applications in biology. However, the mechanical effects of molecular motion on biological materials are difficult to disentangle from photodynamic and photothermal action, which are also present when a light‐absorbing fluorophore is irradiated with light. Here, an overview of the key methods used by various research groups to distinguish the effects of photomechanical, photodynamic, and photothermal action is provided. It is anticipated that this discussion will be helpful to the community seeking to use MM to develop new and distinctive medical technologies that result from mechanical disruption of biological materials. Molecular motors are small molecule actuators that can permeabilize lipid bilayers, kill cancer cells and microorganisms, and control cell signaling. Here, a roadmap is provided detailing how to distinguish the photomechanical action characteristic to these motors from photothermal and photodynamic effects. It is hoped that this framework leads to a robust criterion for the isolation of the effects of molecular motion as the community seeks to use molecular motors for new and distinctive applications.
doi_str_mv 10.1002/adma.202306669
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2902964988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2902964988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3689-15bb7c0fa0904508a5eb8791f215cf0df5d55377ee2cf55a746f46c51f61f1d13</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EoqWwMqJILCwpZyd24rG0fEmtYADWyHVs4iqJi52A-u9JlVIkFqZXunvu1elB6BzDGAOQa5FXYkyARMAY4wdoiCnBYQycHqIh8IiGnMXpAJ14vwIAzoAdo0GUAiMpj4bobWZ8Y-r31viii2BhSyXbUrhgoWQhaiNFGUxkY2wdaGer4LmwjW0K5apuIeq8H-SbWlRGBjeqEJ_GulN0pEXp1dkuR-j17vZl-hDOn-4fp5N5KCOW8hDT5TKRoAVwiCmkgqplmnCsCaZSQ65pTmmUJEoRqSkVScx0zCTFmmGNcxyN0FXfu3b2o1W-ySrjpSpLUSvb-oxwIJ0AnqYdevkHXdnW1d13HUVYxCjHW2rcU9JZ753S2dqZSrhNhiHbGs-2xrO98e7gYlfbLiuV7_EfxR3Ae-DLlGrzT102mS0mv-XfUS-M-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2926365918</pqid></control><display><type>article</type><title>Distinguishing Molecular Mechanical Action from Photothermal and Photodynamic Behavior</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Beckham, Jacob L. ; Bradford, Thomas S. ; Ayala‐Orozco, Ciceron ; Santos, Ana L. ; Arnold, Dallin ; Venrooy, Alexis R. ; García‐López, Víctor ; Pal, Robert ; Tour, James M.</creator><creatorcontrib>Beckham, Jacob L. ; Bradford, Thomas S. ; Ayala‐Orozco, Ciceron ; Santos, Ana L. ; Arnold, Dallin ; Venrooy, Alexis R. ; García‐López, Víctor ; Pal, Robert ; Tour, James M.</creatorcontrib><description>Molecular motors (MM) are molecular machines, or nanomachines, that rotate unidirectionally upon photostimulation and perform mechanical work on their environment. In the last several years, it has been shown that the photomechanical action of MM can be used to permeabilize lipid bilayers, thereby killing cancer cells and pathogenic microorganisms and controlling cell signaling. The work contributes to a growing acknowledgement that the molecular actuation characteristic of these systems is useful for various applications in biology. However, the mechanical effects of molecular motion on biological materials are difficult to disentangle from photodynamic and photothermal action, which are also present when a light‐absorbing fluorophore is irradiated with light. Here, an overview of the key methods used by various research groups to distinguish the effects of photomechanical, photodynamic, and photothermal action is provided. It is anticipated that this discussion will be helpful to the community seeking to use MM to develop new and distinctive medical technologies that result from mechanical disruption of biological materials. Molecular motors are small molecule actuators that can permeabilize lipid bilayers, kill cancer cells and microorganisms, and control cell signaling. Here, a roadmap is provided detailing how to distinguish the photomechanical action characteristic to these motors from photothermal and photodynamic effects. It is hoped that this framework leads to a robust criterion for the isolation of the effects of molecular motion as the community seeks to use molecular motors for new and distinctive applications.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202306669</identifier><identifier>PMID: 38062893</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Actuation ; Biological materials ; Lipid Bilayers ; Lipids ; Molecular machines ; Molecular motion ; Molecular motors ; Motion ; Photochemotherapy ; photodynamic therapy ; photomechanical ; reactive oxygen species</subject><ispartof>Advanced materials (Weinheim), 2024-02, Vol.36 (7), p.e2306669-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3689-15bb7c0fa0904508a5eb8791f215cf0df5d55377ee2cf55a746f46c51f61f1d13</cites><orcidid>0000-0002-2787-3712 ; 0000-0002-2574-0860 ; 0000-0003-2915-4591 ; 0000-0002-8479-9328 ; 0000-0002-5450-9414</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202306669$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202306669$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38062893$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beckham, Jacob L.</creatorcontrib><creatorcontrib>Bradford, Thomas S.</creatorcontrib><creatorcontrib>Ayala‐Orozco, Ciceron</creatorcontrib><creatorcontrib>Santos, Ana L.</creatorcontrib><creatorcontrib>Arnold, Dallin</creatorcontrib><creatorcontrib>Venrooy, Alexis R.</creatorcontrib><creatorcontrib>García‐López, Víctor</creatorcontrib><creatorcontrib>Pal, Robert</creatorcontrib><creatorcontrib>Tour, James M.</creatorcontrib><title>Distinguishing Molecular Mechanical Action from Photothermal and Photodynamic Behavior</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Molecular motors (MM) are molecular machines, or nanomachines, that rotate unidirectionally upon photostimulation and perform mechanical work on their environment. In the last several years, it has been shown that the photomechanical action of MM can be used to permeabilize lipid bilayers, thereby killing cancer cells and pathogenic microorganisms and controlling cell signaling. The work contributes to a growing acknowledgement that the molecular actuation characteristic of these systems is useful for various applications in biology. However, the mechanical effects of molecular motion on biological materials are difficult to disentangle from photodynamic and photothermal action, which are also present when a light‐absorbing fluorophore is irradiated with light. Here, an overview of the key methods used by various research groups to distinguish the effects of photomechanical, photodynamic, and photothermal action is provided. It is anticipated that this discussion will be helpful to the community seeking to use MM to develop new and distinctive medical technologies that result from mechanical disruption of biological materials. Molecular motors are small molecule actuators that can permeabilize lipid bilayers, kill cancer cells and microorganisms, and control cell signaling. Here, a roadmap is provided detailing how to distinguish the photomechanical action characteristic to these motors from photothermal and photodynamic effects. It is hoped that this framework leads to a robust criterion for the isolation of the effects of molecular motion as the community seeks to use molecular motors for new and distinctive applications.</description><subject>Actuation</subject><subject>Biological materials</subject><subject>Lipid Bilayers</subject><subject>Lipids</subject><subject>Molecular machines</subject><subject>Molecular motion</subject><subject>Molecular motors</subject><subject>Motion</subject><subject>Photochemotherapy</subject><subject>photodynamic therapy</subject><subject>photomechanical</subject><subject>reactive oxygen species</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkD1PwzAQhi0EoqWwMqJILCwpZyd24rG0fEmtYADWyHVs4iqJi52A-u9JlVIkFqZXunvu1elB6BzDGAOQa5FXYkyARMAY4wdoiCnBYQycHqIh8IiGnMXpAJ14vwIAzoAdo0GUAiMpj4bobWZ8Y-r31viii2BhSyXbUrhgoWQhaiNFGUxkY2wdaGer4LmwjW0K5apuIeq8H-SbWlRGBjeqEJ_GulN0pEXp1dkuR-j17vZl-hDOn-4fp5N5KCOW8hDT5TKRoAVwiCmkgqplmnCsCaZSQ65pTmmUJEoRqSkVScx0zCTFmmGNcxyN0FXfu3b2o1W-ySrjpSpLUSvb-oxwIJ0AnqYdevkHXdnW1d13HUVYxCjHW2rcU9JZ753S2dqZSrhNhiHbGs-2xrO98e7gYlfbLiuV7_EfxR3Ae-DLlGrzT102mS0mv-XfUS-M-Q</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Beckham, Jacob L.</creator><creator>Bradford, Thomas S.</creator><creator>Ayala‐Orozco, Ciceron</creator><creator>Santos, Ana L.</creator><creator>Arnold, Dallin</creator><creator>Venrooy, Alexis R.</creator><creator>García‐López, Víctor</creator><creator>Pal, Robert</creator><creator>Tour, James M.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2787-3712</orcidid><orcidid>https://orcid.org/0000-0002-2574-0860</orcidid><orcidid>https://orcid.org/0000-0003-2915-4591</orcidid><orcidid>https://orcid.org/0000-0002-8479-9328</orcidid><orcidid>https://orcid.org/0000-0002-5450-9414</orcidid></search><sort><creationdate>20240201</creationdate><title>Distinguishing Molecular Mechanical Action from Photothermal and Photodynamic Behavior</title><author>Beckham, Jacob L. ; Bradford, Thomas S. ; Ayala‐Orozco, Ciceron ; Santos, Ana L. ; Arnold, Dallin ; Venrooy, Alexis R. ; García‐López, Víctor ; Pal, Robert ; Tour, James M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3689-15bb7c0fa0904508a5eb8791f215cf0df5d55377ee2cf55a746f46c51f61f1d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Actuation</topic><topic>Biological materials</topic><topic>Lipid Bilayers</topic><topic>Lipids</topic><topic>Molecular machines</topic><topic>Molecular motion</topic><topic>Molecular motors</topic><topic>Motion</topic><topic>Photochemotherapy</topic><topic>photodynamic therapy</topic><topic>photomechanical</topic><topic>reactive oxygen species</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beckham, Jacob L.</creatorcontrib><creatorcontrib>Bradford, Thomas S.</creatorcontrib><creatorcontrib>Ayala‐Orozco, Ciceron</creatorcontrib><creatorcontrib>Santos, Ana L.</creatorcontrib><creatorcontrib>Arnold, Dallin</creatorcontrib><creatorcontrib>Venrooy, Alexis R.</creatorcontrib><creatorcontrib>García‐López, Víctor</creatorcontrib><creatorcontrib>Pal, Robert</creatorcontrib><creatorcontrib>Tour, James M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beckham, Jacob L.</au><au>Bradford, Thomas S.</au><au>Ayala‐Orozco, Ciceron</au><au>Santos, Ana L.</au><au>Arnold, Dallin</au><au>Venrooy, Alexis R.</au><au>García‐López, Víctor</au><au>Pal, Robert</au><au>Tour, James M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distinguishing Molecular Mechanical Action from Photothermal and Photodynamic Behavior</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>36</volume><issue>7</issue><spage>e2306669</spage><epage>n/a</epage><pages>e2306669-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Molecular motors (MM) are molecular machines, or nanomachines, that rotate unidirectionally upon photostimulation and perform mechanical work on their environment. In the last several years, it has been shown that the photomechanical action of MM can be used to permeabilize lipid bilayers, thereby killing cancer cells and pathogenic microorganisms and controlling cell signaling. The work contributes to a growing acknowledgement that the molecular actuation characteristic of these systems is useful for various applications in biology. However, the mechanical effects of molecular motion on biological materials are difficult to disentangle from photodynamic and photothermal action, which are also present when a light‐absorbing fluorophore is irradiated with light. Here, an overview of the key methods used by various research groups to distinguish the effects of photomechanical, photodynamic, and photothermal action is provided. It is anticipated that this discussion will be helpful to the community seeking to use MM to develop new and distinctive medical technologies that result from mechanical disruption of biological materials. Molecular motors are small molecule actuators that can permeabilize lipid bilayers, kill cancer cells and microorganisms, and control cell signaling. Here, a roadmap is provided detailing how to distinguish the photomechanical action characteristic to these motors from photothermal and photodynamic effects. It is hoped that this framework leads to a robust criterion for the isolation of the effects of molecular motion as the community seeks to use molecular motors for new and distinctive applications.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38062893</pmid><doi>10.1002/adma.202306669</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2787-3712</orcidid><orcidid>https://orcid.org/0000-0002-2574-0860</orcidid><orcidid>https://orcid.org/0000-0003-2915-4591</orcidid><orcidid>https://orcid.org/0000-0002-8479-9328</orcidid><orcidid>https://orcid.org/0000-0002-5450-9414</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-02, Vol.36 (7), p.e2306669-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2902964988
source Wiley Online Library - AutoHoldings Journals; MEDLINE
subjects Actuation
Biological materials
Lipid Bilayers
Lipids
Molecular machines
Molecular motion
Molecular motors
Motion
Photochemotherapy
photodynamic therapy
photomechanical
reactive oxygen species
title Distinguishing Molecular Mechanical Action from Photothermal and Photodynamic Behavior
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A39%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distinguishing%20Molecular%20Mechanical%20Action%20from%20Photothermal%20and%20Photodynamic%20Behavior&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Beckham,%20Jacob%20L.&rft.date=2024-02-01&rft.volume=36&rft.issue=7&rft.spage=e2306669&rft.epage=n/a&rft.pages=e2306669-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202306669&rft_dat=%3Cproquest_cross%3E2902964988%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2926365918&rft_id=info:pmid/38062893&rfr_iscdi=true