Machine Learning Modeling Based on Microbial Community for Prediction of Natural Attenuation in Groundwater
Natural attenuation is widely adopted as a remediation strategy, and the attenuation potential is crucial to evaluate whether remediation goals can be achieved within the specified time. In this work, long-term monitoring of indigenous microbial communities as well as benzene, toluene, ethylbenzene,...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2023-12, Vol.57 (50), p.21212-21223 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21223 |
---|---|
container_issue | 50 |
container_start_page | 21212 |
container_title | Environmental science & technology |
container_volume | 57 |
creator | Zhang, Xiaodong Long, Tao Deng, Shaopo Chen, Qiang Chen, Sheng Luo, Moye Yu, Ran Zhu, Xin |
description | Natural attenuation is widely adopted as a remediation strategy, and the attenuation potential is crucial to evaluate whether remediation goals can be achieved within the specified time. In this work, long-term monitoring of indigenous microbial communities as well as benzene, toluene, ethylbenzene, and xylene (BTEX) and chlorinated aliphatic hydrocarbons (CAHs) in groundwater was conducted at a historic pesticide manufacturing site. A machine learning approach for natural attenuation prediction was developed with random forest classification (RFC) followed by either random forest regression (RFR) or artificial neural networks (ANNs), utilizing microbiological information and contaminant attenuation rates for model training and cross-validation. Results showed that the RFC could accurately predict the feasibility of natural attenuation for both BTEX and CAHs, and it could successfully identify the key genera. The RFR model was sufficient for the BTEX natural attenuation rate prediction but unreliable for CAHs. The ANN model showed better performance in the prediction of the attenuation rates for both BTEX and CAHs. Based on the assessments, a composite modeling method of RFC and ANN was proposed, which could reduce the mean absolute percentage errors. This study reveals that the combined machine learning approach under the synergistic use of field microbial data has promising potential for predicting natural attenuation. |
doi_str_mv | 10.1021/acs.est.3c05667 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2902963853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2905885080</sourcerecordid><originalsourceid>FETCH-LOGICAL-a361t-257a0abcafee9b520a7d04c0df91564ddb25c01866482032faf3b950e19bff463</originalsourceid><addsrcrecordid>eNp1kc9LHDEcxYNUdLWevZVALwWZ9Ztkks0c7dLawq7toYXehkx-tLEziSYziP-9me7qoeApX8LnvW_yHkLnBJYEKLlUOi9tHpdMAxdidYAWhFOouOTkDVoAEFY1TPw6Ric53wIAZSCP0DGTIGomyQL93Sr9xweLN1al4MNvvI3G9vPwUWVrcAx463WKnVc9XsdhmIIfH7GLCX9P1ng9-oJEh2_UOKXCXI2jDZP6d-0Dvk5xCuZBjTa9RYdO9dme7c9T9PPzpx_rL9Xm2_XX9dWmUkyQsaJ8pUB1Wjlrm658R60M1BqMawgXtTEd5RqIFKKWFBh1yrGu4WBJ0zlXC3aKPux871K8n0o87eCztn2vgo1TbmkDtBFMclbQ9_-ht3FKobxupriUHCQU6nJHlRxyTta1d8kPKj22BNq5h7b00M7qfQ9F8W7vO3WDNS_8c_AFuNgBs_Jl52t2T2pjk9k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2905885080</pqid></control><display><type>article</type><title>Machine Learning Modeling Based on Microbial Community for Prediction of Natural Attenuation in Groundwater</title><source>MEDLINE</source><source>ACS Publications</source><creator>Zhang, Xiaodong ; Long, Tao ; Deng, Shaopo ; Chen, Qiang ; Chen, Sheng ; Luo, Moye ; Yu, Ran ; Zhu, Xin</creator><creatorcontrib>Zhang, Xiaodong ; Long, Tao ; Deng, Shaopo ; Chen, Qiang ; Chen, Sheng ; Luo, Moye ; Yu, Ran ; Zhu, Xin</creatorcontrib><description>Natural attenuation is widely adopted as a remediation strategy, and the attenuation potential is crucial to evaluate whether remediation goals can be achieved within the specified time. In this work, long-term monitoring of indigenous microbial communities as well as benzene, toluene, ethylbenzene, and xylene (BTEX) and chlorinated aliphatic hydrocarbons (CAHs) in groundwater was conducted at a historic pesticide manufacturing site. A machine learning approach for natural attenuation prediction was developed with random forest classification (RFC) followed by either random forest regression (RFR) or artificial neural networks (ANNs), utilizing microbiological information and contaminant attenuation rates for model training and cross-validation. Results showed that the RFC could accurately predict the feasibility of natural attenuation for both BTEX and CAHs, and it could successfully identify the key genera. The RFR model was sufficient for the BTEX natural attenuation rate prediction but unreliable for CAHs. The ANN model showed better performance in the prediction of the attenuation rates for both BTEX and CAHs. Based on the assessments, a composite modeling method of RFC and ANN was proposed, which could reduce the mean absolute percentage errors. This study reveals that the combined machine learning approach under the synergistic use of field microbial data has promising potential for predicting natural attenuation.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.3c05667</identifier><identifier>PMID: 38064381</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aliphatic hydrocarbons ; Artificial neural networks ; Attenuation ; Benzene ; Benzene Derivatives ; Biodegradation, Environmental ; Bioremediation and Biotechnology ; Chlorinated hydrocarbons ; Contaminants ; Ethyl benzene ; Ethylbenzene ; Genera ; Groundwater ; Hydrocarbons, Chlorinated ; Information processing ; Learning algorithms ; Machine learning ; Microbial activity ; Microbiomes ; Microorganisms ; Modelling ; Natural attenuation ; Neural networks ; Pesticides ; Predictions ; Remediation ; Toluene ; Water Pollutants, Chemical - analysis ; Xylene ; Xylenes</subject><ispartof>Environmental science & technology, 2023-12, Vol.57 (50), p.21212-21223</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Dec 19, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a361t-257a0abcafee9b520a7d04c0df91564ddb25c01866482032faf3b950e19bff463</citedby><cites>FETCH-LOGICAL-a361t-257a0abcafee9b520a7d04c0df91564ddb25c01866482032faf3b950e19bff463</cites><orcidid>0000-0002-7692-1071</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.3c05667$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.3c05667$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2764,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38064381$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Xiaodong</creatorcontrib><creatorcontrib>Long, Tao</creatorcontrib><creatorcontrib>Deng, Shaopo</creatorcontrib><creatorcontrib>Chen, Qiang</creatorcontrib><creatorcontrib>Chen, Sheng</creatorcontrib><creatorcontrib>Luo, Moye</creatorcontrib><creatorcontrib>Yu, Ran</creatorcontrib><creatorcontrib>Zhu, Xin</creatorcontrib><title>Machine Learning Modeling Based on Microbial Community for Prediction of Natural Attenuation in Groundwater</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Natural attenuation is widely adopted as a remediation strategy, and the attenuation potential is crucial to evaluate whether remediation goals can be achieved within the specified time. In this work, long-term monitoring of indigenous microbial communities as well as benzene, toluene, ethylbenzene, and xylene (BTEX) and chlorinated aliphatic hydrocarbons (CAHs) in groundwater was conducted at a historic pesticide manufacturing site. A machine learning approach for natural attenuation prediction was developed with random forest classification (RFC) followed by either random forest regression (RFR) or artificial neural networks (ANNs), utilizing microbiological information and contaminant attenuation rates for model training and cross-validation. Results showed that the RFC could accurately predict the feasibility of natural attenuation for both BTEX and CAHs, and it could successfully identify the key genera. The RFR model was sufficient for the BTEX natural attenuation rate prediction but unreliable for CAHs. The ANN model showed better performance in the prediction of the attenuation rates for both BTEX and CAHs. Based on the assessments, a composite modeling method of RFC and ANN was proposed, which could reduce the mean absolute percentage errors. This study reveals that the combined machine learning approach under the synergistic use of field microbial data has promising potential for predicting natural attenuation.</description><subject>Aliphatic hydrocarbons</subject><subject>Artificial neural networks</subject><subject>Attenuation</subject><subject>Benzene</subject><subject>Benzene Derivatives</subject><subject>Biodegradation, Environmental</subject><subject>Bioremediation and Biotechnology</subject><subject>Chlorinated hydrocarbons</subject><subject>Contaminants</subject><subject>Ethyl benzene</subject><subject>Ethylbenzene</subject><subject>Genera</subject><subject>Groundwater</subject><subject>Hydrocarbons, Chlorinated</subject><subject>Information processing</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Microbial activity</subject><subject>Microbiomes</subject><subject>Microorganisms</subject><subject>Modelling</subject><subject>Natural attenuation</subject><subject>Neural networks</subject><subject>Pesticides</subject><subject>Predictions</subject><subject>Remediation</subject><subject>Toluene</subject><subject>Water Pollutants, Chemical - analysis</subject><subject>Xylene</subject><subject>Xylenes</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9LHDEcxYNUdLWevZVALwWZ9Ztkks0c7dLawq7toYXehkx-tLEziSYziP-9me7qoeApX8LnvW_yHkLnBJYEKLlUOi9tHpdMAxdidYAWhFOouOTkDVoAEFY1TPw6Ric53wIAZSCP0DGTIGomyQL93Sr9xweLN1al4MNvvI3G9vPwUWVrcAx463WKnVc9XsdhmIIfH7GLCX9P1ng9-oJEh2_UOKXCXI2jDZP6d-0Dvk5xCuZBjTa9RYdO9dme7c9T9PPzpx_rL9Xm2_XX9dWmUkyQsaJ8pUB1Wjlrm658R60M1BqMawgXtTEd5RqIFKKWFBh1yrGu4WBJ0zlXC3aKPux871K8n0o87eCztn2vgo1TbmkDtBFMclbQ9_-ht3FKobxupriUHCQU6nJHlRxyTta1d8kPKj22BNq5h7b00M7qfQ9F8W7vO3WDNS_8c_AFuNgBs_Jl52t2T2pjk9k</recordid><startdate>20231219</startdate><enddate>20231219</enddate><creator>Zhang, Xiaodong</creator><creator>Long, Tao</creator><creator>Deng, Shaopo</creator><creator>Chen, Qiang</creator><creator>Chen, Sheng</creator><creator>Luo, Moye</creator><creator>Yu, Ran</creator><creator>Zhu, Xin</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7692-1071</orcidid></search><sort><creationdate>20231219</creationdate><title>Machine Learning Modeling Based on Microbial Community for Prediction of Natural Attenuation in Groundwater</title><author>Zhang, Xiaodong ; Long, Tao ; Deng, Shaopo ; Chen, Qiang ; Chen, Sheng ; Luo, Moye ; Yu, Ran ; Zhu, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a361t-257a0abcafee9b520a7d04c0df91564ddb25c01866482032faf3b950e19bff463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aliphatic hydrocarbons</topic><topic>Artificial neural networks</topic><topic>Attenuation</topic><topic>Benzene</topic><topic>Benzene Derivatives</topic><topic>Biodegradation, Environmental</topic><topic>Bioremediation and Biotechnology</topic><topic>Chlorinated hydrocarbons</topic><topic>Contaminants</topic><topic>Ethyl benzene</topic><topic>Ethylbenzene</topic><topic>Genera</topic><topic>Groundwater</topic><topic>Hydrocarbons, Chlorinated</topic><topic>Information processing</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Microbial activity</topic><topic>Microbiomes</topic><topic>Microorganisms</topic><topic>Modelling</topic><topic>Natural attenuation</topic><topic>Neural networks</topic><topic>Pesticides</topic><topic>Predictions</topic><topic>Remediation</topic><topic>Toluene</topic><topic>Water Pollutants, Chemical - analysis</topic><topic>Xylene</topic><topic>Xylenes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiaodong</creatorcontrib><creatorcontrib>Long, Tao</creatorcontrib><creatorcontrib>Deng, Shaopo</creatorcontrib><creatorcontrib>Chen, Qiang</creatorcontrib><creatorcontrib>Chen, Sheng</creatorcontrib><creatorcontrib>Luo, Moye</creatorcontrib><creatorcontrib>Yu, Ran</creatorcontrib><creatorcontrib>Zhu, Xin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xiaodong</au><au>Long, Tao</au><au>Deng, Shaopo</au><au>Chen, Qiang</au><au>Chen, Sheng</au><au>Luo, Moye</au><au>Yu, Ran</au><au>Zhu, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning Modeling Based on Microbial Community for Prediction of Natural Attenuation in Groundwater</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2023-12-19</date><risdate>2023</risdate><volume>57</volume><issue>50</issue><spage>21212</spage><epage>21223</epage><pages>21212-21223</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Natural attenuation is widely adopted as a remediation strategy, and the attenuation potential is crucial to evaluate whether remediation goals can be achieved within the specified time. In this work, long-term monitoring of indigenous microbial communities as well as benzene, toluene, ethylbenzene, and xylene (BTEX) and chlorinated aliphatic hydrocarbons (CAHs) in groundwater was conducted at a historic pesticide manufacturing site. A machine learning approach for natural attenuation prediction was developed with random forest classification (RFC) followed by either random forest regression (RFR) or artificial neural networks (ANNs), utilizing microbiological information and contaminant attenuation rates for model training and cross-validation. Results showed that the RFC could accurately predict the feasibility of natural attenuation for both BTEX and CAHs, and it could successfully identify the key genera. The RFR model was sufficient for the BTEX natural attenuation rate prediction but unreliable for CAHs. The ANN model showed better performance in the prediction of the attenuation rates for both BTEX and CAHs. Based on the assessments, a composite modeling method of RFC and ANN was proposed, which could reduce the mean absolute percentage errors. This study reveals that the combined machine learning approach under the synergistic use of field microbial data has promising potential for predicting natural attenuation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38064381</pmid><doi>10.1021/acs.est.3c05667</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7692-1071</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2023-12, Vol.57 (50), p.21212-21223 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_2902963853 |
source | MEDLINE; ACS Publications |
subjects | Aliphatic hydrocarbons Artificial neural networks Attenuation Benzene Benzene Derivatives Biodegradation, Environmental Bioremediation and Biotechnology Chlorinated hydrocarbons Contaminants Ethyl benzene Ethylbenzene Genera Groundwater Hydrocarbons, Chlorinated Information processing Learning algorithms Machine learning Microbial activity Microbiomes Microorganisms Modelling Natural attenuation Neural networks Pesticides Predictions Remediation Toluene Water Pollutants, Chemical - analysis Xylene Xylenes |
title | Machine Learning Modeling Based on Microbial Community for Prediction of Natural Attenuation in Groundwater |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A33%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20Modeling%20Based%20on%20Microbial%20Community%20for%20Prediction%20of%20Natural%20Attenuation%20in%20Groundwater&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Zhang,%20Xiaodong&rft.date=2023-12-19&rft.volume=57&rft.issue=50&rft.spage=21212&rft.epage=21223&rft.pages=21212-21223&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.3c05667&rft_dat=%3Cproquest_cross%3E2905885080%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2905885080&rft_id=info:pmid/38064381&rfr_iscdi=true |