Machine Learning Modeling Based on Microbial Community for Prediction of Natural Attenuation in Groundwater

Natural attenuation is widely adopted as a remediation strategy, and the attenuation potential is crucial to evaluate whether remediation goals can be achieved within the specified time. In this work, long-term monitoring of indigenous microbial communities as well as benzene, toluene, ethylbenzene,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2023-12, Vol.57 (50), p.21212-21223
Hauptverfasser: Zhang, Xiaodong, Long, Tao, Deng, Shaopo, Chen, Qiang, Chen, Sheng, Luo, Moye, Yu, Ran, Zhu, Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21223
container_issue 50
container_start_page 21212
container_title Environmental science & technology
container_volume 57
creator Zhang, Xiaodong
Long, Tao
Deng, Shaopo
Chen, Qiang
Chen, Sheng
Luo, Moye
Yu, Ran
Zhu, Xin
description Natural attenuation is widely adopted as a remediation strategy, and the attenuation potential is crucial to evaluate whether remediation goals can be achieved within the specified time. In this work, long-term monitoring of indigenous microbial communities as well as benzene, toluene, ethylbenzene, and xylene (BTEX) and chlorinated aliphatic hydrocarbons (CAHs) in groundwater was conducted at a historic pesticide manufacturing site. A machine learning approach for natural attenuation prediction was developed with random forest classification (RFC) followed by either random forest regression (RFR) or artificial neural networks (ANNs), utilizing microbiological information and contaminant attenuation rates for model training and cross-validation. Results showed that the RFC could accurately predict the feasibility of natural attenuation for both BTEX and CAHs, and it could successfully identify the key genera. The RFR model was sufficient for the BTEX natural attenuation rate prediction but unreliable for CAHs. The ANN model showed better performance in the prediction of the attenuation rates for both BTEX and CAHs. Based on the assessments, a composite modeling method of RFC and ANN was proposed, which could reduce the mean absolute percentage errors. This study reveals that the combined machine learning approach under the synergistic use of field microbial data has promising potential for predicting natural attenuation.
doi_str_mv 10.1021/acs.est.3c05667
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2902963853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2905885080</sourcerecordid><originalsourceid>FETCH-LOGICAL-a361t-257a0abcafee9b520a7d04c0df91564ddb25c01866482032faf3b950e19bff463</originalsourceid><addsrcrecordid>eNp1kc9LHDEcxYNUdLWevZVALwWZ9Ztkks0c7dLawq7toYXehkx-tLEziSYziP-9me7qoeApX8LnvW_yHkLnBJYEKLlUOi9tHpdMAxdidYAWhFOouOTkDVoAEFY1TPw6Ric53wIAZSCP0DGTIGomyQL93Sr9xweLN1al4MNvvI3G9vPwUWVrcAx463WKnVc9XsdhmIIfH7GLCX9P1ng9-oJEh2_UOKXCXI2jDZP6d-0Dvk5xCuZBjTa9RYdO9dme7c9T9PPzpx_rL9Xm2_XX9dWmUkyQsaJ8pUB1Wjlrm658R60M1BqMawgXtTEd5RqIFKKWFBh1yrGu4WBJ0zlXC3aKPux871K8n0o87eCztn2vgo1TbmkDtBFMclbQ9_-ht3FKobxupriUHCQU6nJHlRxyTta1d8kPKj22BNq5h7b00M7qfQ9F8W7vO3WDNS_8c_AFuNgBs_Jl52t2T2pjk9k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2905885080</pqid></control><display><type>article</type><title>Machine Learning Modeling Based on Microbial Community for Prediction of Natural Attenuation in Groundwater</title><source>MEDLINE</source><source>ACS Publications</source><creator>Zhang, Xiaodong ; Long, Tao ; Deng, Shaopo ; Chen, Qiang ; Chen, Sheng ; Luo, Moye ; Yu, Ran ; Zhu, Xin</creator><creatorcontrib>Zhang, Xiaodong ; Long, Tao ; Deng, Shaopo ; Chen, Qiang ; Chen, Sheng ; Luo, Moye ; Yu, Ran ; Zhu, Xin</creatorcontrib><description>Natural attenuation is widely adopted as a remediation strategy, and the attenuation potential is crucial to evaluate whether remediation goals can be achieved within the specified time. In this work, long-term monitoring of indigenous microbial communities as well as benzene, toluene, ethylbenzene, and xylene (BTEX) and chlorinated aliphatic hydrocarbons (CAHs) in groundwater was conducted at a historic pesticide manufacturing site. A machine learning approach for natural attenuation prediction was developed with random forest classification (RFC) followed by either random forest regression (RFR) or artificial neural networks (ANNs), utilizing microbiological information and contaminant attenuation rates for model training and cross-validation. Results showed that the RFC could accurately predict the feasibility of natural attenuation for both BTEX and CAHs, and it could successfully identify the key genera. The RFR model was sufficient for the BTEX natural attenuation rate prediction but unreliable for CAHs. The ANN model showed better performance in the prediction of the attenuation rates for both BTEX and CAHs. Based on the assessments, a composite modeling method of RFC and ANN was proposed, which could reduce the mean absolute percentage errors. This study reveals that the combined machine learning approach under the synergistic use of field microbial data has promising potential for predicting natural attenuation.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.3c05667</identifier><identifier>PMID: 38064381</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aliphatic hydrocarbons ; Artificial neural networks ; Attenuation ; Benzene ; Benzene Derivatives ; Biodegradation, Environmental ; Bioremediation and Biotechnology ; Chlorinated hydrocarbons ; Contaminants ; Ethyl benzene ; Ethylbenzene ; Genera ; Groundwater ; Hydrocarbons, Chlorinated ; Information processing ; Learning algorithms ; Machine learning ; Microbial activity ; Microbiomes ; Microorganisms ; Modelling ; Natural attenuation ; Neural networks ; Pesticides ; Predictions ; Remediation ; Toluene ; Water Pollutants, Chemical - analysis ; Xylene ; Xylenes</subject><ispartof>Environmental science &amp; technology, 2023-12, Vol.57 (50), p.21212-21223</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Dec 19, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a361t-257a0abcafee9b520a7d04c0df91564ddb25c01866482032faf3b950e19bff463</citedby><cites>FETCH-LOGICAL-a361t-257a0abcafee9b520a7d04c0df91564ddb25c01866482032faf3b950e19bff463</cites><orcidid>0000-0002-7692-1071</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.3c05667$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.3c05667$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2764,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38064381$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Xiaodong</creatorcontrib><creatorcontrib>Long, Tao</creatorcontrib><creatorcontrib>Deng, Shaopo</creatorcontrib><creatorcontrib>Chen, Qiang</creatorcontrib><creatorcontrib>Chen, Sheng</creatorcontrib><creatorcontrib>Luo, Moye</creatorcontrib><creatorcontrib>Yu, Ran</creatorcontrib><creatorcontrib>Zhu, Xin</creatorcontrib><title>Machine Learning Modeling Based on Microbial Community for Prediction of Natural Attenuation in Groundwater</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Natural attenuation is widely adopted as a remediation strategy, and the attenuation potential is crucial to evaluate whether remediation goals can be achieved within the specified time. In this work, long-term monitoring of indigenous microbial communities as well as benzene, toluene, ethylbenzene, and xylene (BTEX) and chlorinated aliphatic hydrocarbons (CAHs) in groundwater was conducted at a historic pesticide manufacturing site. A machine learning approach for natural attenuation prediction was developed with random forest classification (RFC) followed by either random forest regression (RFR) or artificial neural networks (ANNs), utilizing microbiological information and contaminant attenuation rates for model training and cross-validation. Results showed that the RFC could accurately predict the feasibility of natural attenuation for both BTEX and CAHs, and it could successfully identify the key genera. The RFR model was sufficient for the BTEX natural attenuation rate prediction but unreliable for CAHs. The ANN model showed better performance in the prediction of the attenuation rates for both BTEX and CAHs. Based on the assessments, a composite modeling method of RFC and ANN was proposed, which could reduce the mean absolute percentage errors. This study reveals that the combined machine learning approach under the synergistic use of field microbial data has promising potential for predicting natural attenuation.</description><subject>Aliphatic hydrocarbons</subject><subject>Artificial neural networks</subject><subject>Attenuation</subject><subject>Benzene</subject><subject>Benzene Derivatives</subject><subject>Biodegradation, Environmental</subject><subject>Bioremediation and Biotechnology</subject><subject>Chlorinated hydrocarbons</subject><subject>Contaminants</subject><subject>Ethyl benzene</subject><subject>Ethylbenzene</subject><subject>Genera</subject><subject>Groundwater</subject><subject>Hydrocarbons, Chlorinated</subject><subject>Information processing</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Microbial activity</subject><subject>Microbiomes</subject><subject>Microorganisms</subject><subject>Modelling</subject><subject>Natural attenuation</subject><subject>Neural networks</subject><subject>Pesticides</subject><subject>Predictions</subject><subject>Remediation</subject><subject>Toluene</subject><subject>Water Pollutants, Chemical - analysis</subject><subject>Xylene</subject><subject>Xylenes</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9LHDEcxYNUdLWevZVALwWZ9Ztkks0c7dLawq7toYXehkx-tLEziSYziP-9me7qoeApX8LnvW_yHkLnBJYEKLlUOi9tHpdMAxdidYAWhFOouOTkDVoAEFY1TPw6Ric53wIAZSCP0DGTIGomyQL93Sr9xweLN1al4MNvvI3G9vPwUWVrcAx463WKnVc9XsdhmIIfH7GLCX9P1ng9-oJEh2_UOKXCXI2jDZP6d-0Dvk5xCuZBjTa9RYdO9dme7c9T9PPzpx_rL9Xm2_XX9dWmUkyQsaJ8pUB1Wjlrm658R60M1BqMawgXtTEd5RqIFKKWFBh1yrGu4WBJ0zlXC3aKPux871K8n0o87eCztn2vgo1TbmkDtBFMclbQ9_-ht3FKobxupriUHCQU6nJHlRxyTta1d8kPKj22BNq5h7b00M7qfQ9F8W7vO3WDNS_8c_AFuNgBs_Jl52t2T2pjk9k</recordid><startdate>20231219</startdate><enddate>20231219</enddate><creator>Zhang, Xiaodong</creator><creator>Long, Tao</creator><creator>Deng, Shaopo</creator><creator>Chen, Qiang</creator><creator>Chen, Sheng</creator><creator>Luo, Moye</creator><creator>Yu, Ran</creator><creator>Zhu, Xin</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7692-1071</orcidid></search><sort><creationdate>20231219</creationdate><title>Machine Learning Modeling Based on Microbial Community for Prediction of Natural Attenuation in Groundwater</title><author>Zhang, Xiaodong ; Long, Tao ; Deng, Shaopo ; Chen, Qiang ; Chen, Sheng ; Luo, Moye ; Yu, Ran ; Zhu, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a361t-257a0abcafee9b520a7d04c0df91564ddb25c01866482032faf3b950e19bff463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aliphatic hydrocarbons</topic><topic>Artificial neural networks</topic><topic>Attenuation</topic><topic>Benzene</topic><topic>Benzene Derivatives</topic><topic>Biodegradation, Environmental</topic><topic>Bioremediation and Biotechnology</topic><topic>Chlorinated hydrocarbons</topic><topic>Contaminants</topic><topic>Ethyl benzene</topic><topic>Ethylbenzene</topic><topic>Genera</topic><topic>Groundwater</topic><topic>Hydrocarbons, Chlorinated</topic><topic>Information processing</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Microbial activity</topic><topic>Microbiomes</topic><topic>Microorganisms</topic><topic>Modelling</topic><topic>Natural attenuation</topic><topic>Neural networks</topic><topic>Pesticides</topic><topic>Predictions</topic><topic>Remediation</topic><topic>Toluene</topic><topic>Water Pollutants, Chemical - analysis</topic><topic>Xylene</topic><topic>Xylenes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiaodong</creatorcontrib><creatorcontrib>Long, Tao</creatorcontrib><creatorcontrib>Deng, Shaopo</creatorcontrib><creatorcontrib>Chen, Qiang</creatorcontrib><creatorcontrib>Chen, Sheng</creatorcontrib><creatorcontrib>Luo, Moye</creatorcontrib><creatorcontrib>Yu, Ran</creatorcontrib><creatorcontrib>Zhu, Xin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xiaodong</au><au>Long, Tao</au><au>Deng, Shaopo</au><au>Chen, Qiang</au><au>Chen, Sheng</au><au>Luo, Moye</au><au>Yu, Ran</au><au>Zhu, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning Modeling Based on Microbial Community for Prediction of Natural Attenuation in Groundwater</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2023-12-19</date><risdate>2023</risdate><volume>57</volume><issue>50</issue><spage>21212</spage><epage>21223</epage><pages>21212-21223</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Natural attenuation is widely adopted as a remediation strategy, and the attenuation potential is crucial to evaluate whether remediation goals can be achieved within the specified time. In this work, long-term monitoring of indigenous microbial communities as well as benzene, toluene, ethylbenzene, and xylene (BTEX) and chlorinated aliphatic hydrocarbons (CAHs) in groundwater was conducted at a historic pesticide manufacturing site. A machine learning approach for natural attenuation prediction was developed with random forest classification (RFC) followed by either random forest regression (RFR) or artificial neural networks (ANNs), utilizing microbiological information and contaminant attenuation rates for model training and cross-validation. Results showed that the RFC could accurately predict the feasibility of natural attenuation for both BTEX and CAHs, and it could successfully identify the key genera. The RFR model was sufficient for the BTEX natural attenuation rate prediction but unreliable for CAHs. The ANN model showed better performance in the prediction of the attenuation rates for both BTEX and CAHs. Based on the assessments, a composite modeling method of RFC and ANN was proposed, which could reduce the mean absolute percentage errors. This study reveals that the combined machine learning approach under the synergistic use of field microbial data has promising potential for predicting natural attenuation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38064381</pmid><doi>10.1021/acs.est.3c05667</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7692-1071</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2023-12, Vol.57 (50), p.21212-21223
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_2902963853
source MEDLINE; ACS Publications
subjects Aliphatic hydrocarbons
Artificial neural networks
Attenuation
Benzene
Benzene Derivatives
Biodegradation, Environmental
Bioremediation and Biotechnology
Chlorinated hydrocarbons
Contaminants
Ethyl benzene
Ethylbenzene
Genera
Groundwater
Hydrocarbons, Chlorinated
Information processing
Learning algorithms
Machine learning
Microbial activity
Microbiomes
Microorganisms
Modelling
Natural attenuation
Neural networks
Pesticides
Predictions
Remediation
Toluene
Water Pollutants, Chemical - analysis
Xylene
Xylenes
title Machine Learning Modeling Based on Microbial Community for Prediction of Natural Attenuation in Groundwater
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A33%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20Modeling%20Based%20on%20Microbial%20Community%20for%20Prediction%20of%20Natural%20Attenuation%20in%20Groundwater&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Zhang,%20Xiaodong&rft.date=2023-12-19&rft.volume=57&rft.issue=50&rft.spage=21212&rft.epage=21223&rft.pages=21212-21223&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.3c05667&rft_dat=%3Cproquest_cross%3E2905885080%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2905885080&rft_id=info:pmid/38064381&rfr_iscdi=true