Machine learning-coupled tactile recognition with high spatiotemporal resolution based on cross-striped nanocarbon piezoresistive sensor array
Flexible pressure sensor arrays have been playing important roles in various applications of human-machine interface, including robotic tactile sensing, electronic skin, prosthetics, and human-machine interaction. However, it remains challenging to simultaneously achieve high spatial and temporal re...
Gespeichert in:
Veröffentlicht in: | Biosensors & bioelectronics 2024-02, Vol.246, p.115873-115873, Article 115873 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 115873 |
---|---|
container_issue | |
container_start_page | 115873 |
container_title | Biosensors & bioelectronics |
container_volume | 246 |
creator | Ouyang, Qiangqiang Yao, Chuanjie Chen, Houhua Song, Liping Zhang, Tao Chen, Dapeng Yang, Lidong Chen, Mojun Chen, Hui-Jiuan Peng, Zhenwei Xie, Xi |
description | Flexible pressure sensor arrays have been playing important roles in various applications of human-machine interface, including robotic tactile sensing, electronic skin, prosthetics, and human-machine interaction. However, it remains challenging to simultaneously achieve high spatial and temporal resolution in developing pressure sensor arrays for tactile sensing with robust function to achieve precise signal recognition. This work presents the development of a flexible high spatiotemporal piezoresistive sensor array (PRSA) by coupling with machine learning algorithms to enhance tactile recognition. The sensor employs cross-striped nanocarbon-polymer composite as an active layer, though screen printing manufacture processes. A miniaturized signal readout circuit and transmission board is developed to achieve high-speed acquisition of distributed pressure signals from the PRSA. Test results indicate that the developed PRSA platform simultaneously possesses the characteristics of high spatial resolution up to 1.5 mm, fast temporal resolution of about 5 ms, and long-term durability with a variation of less than 2%. The PRSA platform also exhibits excellent performance in real-time visualization of multi-point touch, mapping embossed shapes, and tracking motion trajectory. To test the performance of PRSA in recognizing different shapes, we acquired pressure images by pressing the finger-type device coated with PRSA film on different embossed shapes and implementing the T-distributed Stochastic Neighbor Embedding model to visualize the distinction between images of different shapes. Then we adopted a one-layer neural network to quantify the discernibility between images of different shapes. The analysis results show that the PRSA could capture the embossed shapes clearly by one contact with high discernibility up to 98.9%. Collectively, the PRSA as a promising platform demonstrates its promising potential for robotic tactile sensing. |
doi_str_mv | 10.1016/j.bios.2023.115873 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2902959153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2902959153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-ab6ff32073ab648521fab67eb8062d265e37d0754976b40d222930774bff02fb3</originalsourceid><addsrcrecordid>eNo9UUFu2zAQJIoGjZvkAz0UOvYiZUmKonQsjCYtkCCX5EyQ0sqmIZMqSbVIHpE3h47dnmawOzPA7hDyhUJFgTbXu8pYHysGjFeUilbyD2RFM5Q14-IjWUEnmlI0DT8nn2PcAYCkHXwi57zNrBV8RV7vdb-1DosJdXDWbcreL_OEQ5F0n-yERcDeb5xN1rvir03bYms32yLOOk8S7mcf9JRF0U_Lu8bomN2Z9MHHWMYU7JwHTjvf62DyYrb44rPDxmT_YBHRRR8KHYJ-viRno54iXp3wgjzd_Hhc_yzvHm5_rb_flT0HnkptmnHkDCTPrG4Fo2MmEk0LDRtYI5DLAaSoO9mYGgbGWMdBytqMI7DR8Avy7Zg7B_97wZjU3sYep0k79EtUrAPWiY4KnqXsKH2_J-Co5mD3OjwrCurQg9qpQw_q0IM69pBNX0_5i9nj8N_y7_H8DVmNiRE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2902959153</pqid></control><display><type>article</type><title>Machine learning-coupled tactile recognition with high spatiotemporal resolution based on cross-striped nanocarbon piezoresistive sensor array</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Ouyang, Qiangqiang ; Yao, Chuanjie ; Chen, Houhua ; Song, Liping ; Zhang, Tao ; Chen, Dapeng ; Yang, Lidong ; Chen, Mojun ; Chen, Hui-Jiuan ; Peng, Zhenwei ; Xie, Xi</creator><creatorcontrib>Ouyang, Qiangqiang ; Yao, Chuanjie ; Chen, Houhua ; Song, Liping ; Zhang, Tao ; Chen, Dapeng ; Yang, Lidong ; Chen, Mojun ; Chen, Hui-Jiuan ; Peng, Zhenwei ; Xie, Xi</creatorcontrib><description>Flexible pressure sensor arrays have been playing important roles in various applications of human-machine interface, including robotic tactile sensing, electronic skin, prosthetics, and human-machine interaction. However, it remains challenging to simultaneously achieve high spatial and temporal resolution in developing pressure sensor arrays for tactile sensing with robust function to achieve precise signal recognition. This work presents the development of a flexible high spatiotemporal piezoresistive sensor array (PRSA) by coupling with machine learning algorithms to enhance tactile recognition. The sensor employs cross-striped nanocarbon-polymer composite as an active layer, though screen printing manufacture processes. A miniaturized signal readout circuit and transmission board is developed to achieve high-speed acquisition of distributed pressure signals from the PRSA. Test results indicate that the developed PRSA platform simultaneously possesses the characteristics of high spatial resolution up to 1.5 mm, fast temporal resolution of about 5 ms, and long-term durability with a variation of less than 2%. The PRSA platform also exhibits excellent performance in real-time visualization of multi-point touch, mapping embossed shapes, and tracking motion trajectory. To test the performance of PRSA in recognizing different shapes, we acquired pressure images by pressing the finger-type device coated with PRSA film on different embossed shapes and implementing the T-distributed Stochastic Neighbor Embedding model to visualize the distinction between images of different shapes. Then we adopted a one-layer neural network to quantify the discernibility between images of different shapes. The analysis results show that the PRSA could capture the embossed shapes clearly by one contact with high discernibility up to 98.9%. Collectively, the PRSA as a promising platform demonstrates its promising potential for robotic tactile sensing.</description><identifier>ISSN: 0956-5663</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/j.bios.2023.115873</identifier><identifier>PMID: 38071853</identifier><language>eng</language><publisher>England</publisher><subject>Algorithms ; Biosensing Techniques ; Humans ; Machine Learning ; Neural Networks, Computer ; Touch</subject><ispartof>Biosensors & bioelectronics, 2024-02, Vol.246, p.115873-115873, Article 115873</ispartof><rights>Copyright © 2023 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-ab6ff32073ab648521fab67eb8062d265e37d0754976b40d222930774bff02fb3</citedby><cites>FETCH-LOGICAL-c303t-ab6ff32073ab648521fab67eb8062d265e37d0754976b40d222930774bff02fb3</cites><orcidid>0000-0001-9265-2660 ; 0000-0002-1930-419X ; 0000-0001-7406-8444</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38071853$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ouyang, Qiangqiang</creatorcontrib><creatorcontrib>Yao, Chuanjie</creatorcontrib><creatorcontrib>Chen, Houhua</creatorcontrib><creatorcontrib>Song, Liping</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Chen, Dapeng</creatorcontrib><creatorcontrib>Yang, Lidong</creatorcontrib><creatorcontrib>Chen, Mojun</creatorcontrib><creatorcontrib>Chen, Hui-Jiuan</creatorcontrib><creatorcontrib>Peng, Zhenwei</creatorcontrib><creatorcontrib>Xie, Xi</creatorcontrib><title>Machine learning-coupled tactile recognition with high spatiotemporal resolution based on cross-striped nanocarbon piezoresistive sensor array</title><title>Biosensors & bioelectronics</title><addtitle>Biosens Bioelectron</addtitle><description>Flexible pressure sensor arrays have been playing important roles in various applications of human-machine interface, including robotic tactile sensing, electronic skin, prosthetics, and human-machine interaction. However, it remains challenging to simultaneously achieve high spatial and temporal resolution in developing pressure sensor arrays for tactile sensing with robust function to achieve precise signal recognition. This work presents the development of a flexible high spatiotemporal piezoresistive sensor array (PRSA) by coupling with machine learning algorithms to enhance tactile recognition. The sensor employs cross-striped nanocarbon-polymer composite as an active layer, though screen printing manufacture processes. A miniaturized signal readout circuit and transmission board is developed to achieve high-speed acquisition of distributed pressure signals from the PRSA. Test results indicate that the developed PRSA platform simultaneously possesses the characteristics of high spatial resolution up to 1.5 mm, fast temporal resolution of about 5 ms, and long-term durability with a variation of less than 2%. The PRSA platform also exhibits excellent performance in real-time visualization of multi-point touch, mapping embossed shapes, and tracking motion trajectory. To test the performance of PRSA in recognizing different shapes, we acquired pressure images by pressing the finger-type device coated with PRSA film on different embossed shapes and implementing the T-distributed Stochastic Neighbor Embedding model to visualize the distinction between images of different shapes. Then we adopted a one-layer neural network to quantify the discernibility between images of different shapes. The analysis results show that the PRSA could capture the embossed shapes clearly by one contact with high discernibility up to 98.9%. Collectively, the PRSA as a promising platform demonstrates its promising potential for robotic tactile sensing.</description><subject>Algorithms</subject><subject>Biosensing Techniques</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Neural Networks, Computer</subject><subject>Touch</subject><issn>0956-5663</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9UUFu2zAQJIoGjZvkAz0UOvYiZUmKonQsjCYtkCCX5EyQ0sqmIZMqSbVIHpE3h47dnmawOzPA7hDyhUJFgTbXu8pYHysGjFeUilbyD2RFM5Q14-IjWUEnmlI0DT8nn2PcAYCkHXwi57zNrBV8RV7vdb-1DosJdXDWbcreL_OEQ5F0n-yERcDeb5xN1rvir03bYms32yLOOk8S7mcf9JRF0U_Lu8bomN2Z9MHHWMYU7JwHTjvf62DyYrb44rPDxmT_YBHRRR8KHYJ-viRno54iXp3wgjzd_Hhc_yzvHm5_rb_flT0HnkptmnHkDCTPrG4Fo2MmEk0LDRtYI5DLAaSoO9mYGgbGWMdBytqMI7DR8Avy7Zg7B_97wZjU3sYep0k79EtUrAPWiY4KnqXsKH2_J-Co5mD3OjwrCurQg9qpQw_q0IM69pBNX0_5i9nj8N_y7_H8DVmNiRE</recordid><startdate>20240215</startdate><enddate>20240215</enddate><creator>Ouyang, Qiangqiang</creator><creator>Yao, Chuanjie</creator><creator>Chen, Houhua</creator><creator>Song, Liping</creator><creator>Zhang, Tao</creator><creator>Chen, Dapeng</creator><creator>Yang, Lidong</creator><creator>Chen, Mojun</creator><creator>Chen, Hui-Jiuan</creator><creator>Peng, Zhenwei</creator><creator>Xie, Xi</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9265-2660</orcidid><orcidid>https://orcid.org/0000-0002-1930-419X</orcidid><orcidid>https://orcid.org/0000-0001-7406-8444</orcidid></search><sort><creationdate>20240215</creationdate><title>Machine learning-coupled tactile recognition with high spatiotemporal resolution based on cross-striped nanocarbon piezoresistive sensor array</title><author>Ouyang, Qiangqiang ; Yao, Chuanjie ; Chen, Houhua ; Song, Liping ; Zhang, Tao ; Chen, Dapeng ; Yang, Lidong ; Chen, Mojun ; Chen, Hui-Jiuan ; Peng, Zhenwei ; Xie, Xi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-ab6ff32073ab648521fab67eb8062d265e37d0754976b40d222930774bff02fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Biosensing Techniques</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Neural Networks, Computer</topic><topic>Touch</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ouyang, Qiangqiang</creatorcontrib><creatorcontrib>Yao, Chuanjie</creatorcontrib><creatorcontrib>Chen, Houhua</creatorcontrib><creatorcontrib>Song, Liping</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Chen, Dapeng</creatorcontrib><creatorcontrib>Yang, Lidong</creatorcontrib><creatorcontrib>Chen, Mojun</creatorcontrib><creatorcontrib>Chen, Hui-Jiuan</creatorcontrib><creatorcontrib>Peng, Zhenwei</creatorcontrib><creatorcontrib>Xie, Xi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biosensors & bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ouyang, Qiangqiang</au><au>Yao, Chuanjie</au><au>Chen, Houhua</au><au>Song, Liping</au><au>Zhang, Tao</au><au>Chen, Dapeng</au><au>Yang, Lidong</au><au>Chen, Mojun</au><au>Chen, Hui-Jiuan</au><au>Peng, Zhenwei</au><au>Xie, Xi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning-coupled tactile recognition with high spatiotemporal resolution based on cross-striped nanocarbon piezoresistive sensor array</atitle><jtitle>Biosensors & bioelectronics</jtitle><addtitle>Biosens Bioelectron</addtitle><date>2024-02-15</date><risdate>2024</risdate><volume>246</volume><spage>115873</spage><epage>115873</epage><pages>115873-115873</pages><artnum>115873</artnum><issn>0956-5663</issn><eissn>1873-4235</eissn><abstract>Flexible pressure sensor arrays have been playing important roles in various applications of human-machine interface, including robotic tactile sensing, electronic skin, prosthetics, and human-machine interaction. However, it remains challenging to simultaneously achieve high spatial and temporal resolution in developing pressure sensor arrays for tactile sensing with robust function to achieve precise signal recognition. This work presents the development of a flexible high spatiotemporal piezoresistive sensor array (PRSA) by coupling with machine learning algorithms to enhance tactile recognition. The sensor employs cross-striped nanocarbon-polymer composite as an active layer, though screen printing manufacture processes. A miniaturized signal readout circuit and transmission board is developed to achieve high-speed acquisition of distributed pressure signals from the PRSA. Test results indicate that the developed PRSA platform simultaneously possesses the characteristics of high spatial resolution up to 1.5 mm, fast temporal resolution of about 5 ms, and long-term durability with a variation of less than 2%. The PRSA platform also exhibits excellent performance in real-time visualization of multi-point touch, mapping embossed shapes, and tracking motion trajectory. To test the performance of PRSA in recognizing different shapes, we acquired pressure images by pressing the finger-type device coated with PRSA film on different embossed shapes and implementing the T-distributed Stochastic Neighbor Embedding model to visualize the distinction between images of different shapes. Then we adopted a one-layer neural network to quantify the discernibility between images of different shapes. The analysis results show that the PRSA could capture the embossed shapes clearly by one contact with high discernibility up to 98.9%. Collectively, the PRSA as a promising platform demonstrates its promising potential for robotic tactile sensing.</abstract><cop>England</cop><pmid>38071853</pmid><doi>10.1016/j.bios.2023.115873</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9265-2660</orcidid><orcidid>https://orcid.org/0000-0002-1930-419X</orcidid><orcidid>https://orcid.org/0000-0001-7406-8444</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-5663 |
ispartof | Biosensors & bioelectronics, 2024-02, Vol.246, p.115873-115873, Article 115873 |
issn | 0956-5663 1873-4235 |
language | eng |
recordid | cdi_proquest_miscellaneous_2902959153 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Algorithms Biosensing Techniques Humans Machine Learning Neural Networks, Computer Touch |
title | Machine learning-coupled tactile recognition with high spatiotemporal resolution based on cross-striped nanocarbon piezoresistive sensor array |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A15%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning-coupled%20tactile%20recognition%20with%20high%20spatiotemporal%20resolution%20based%20on%20cross-striped%20nanocarbon%20piezoresistive%20sensor%20array&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Ouyang,%20Qiangqiang&rft.date=2024-02-15&rft.volume=246&rft.spage=115873&rft.epage=115873&rft.pages=115873-115873&rft.artnum=115873&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/j.bios.2023.115873&rft_dat=%3Cproquest_cross%3E2902959153%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2902959153&rft_id=info:pmid/38071853&rfr_iscdi=true |