Flexible Actuators with Hygroscopic Adaptability for Smart Wearables and Soft Grippers
Flexible actuators have garnered significant interest in the domains of biomedical devices, human–machine interfaces, and smart wearables. However, the mechanical properties of existing materials are not sufficiently robust, and the expensive and time-consuming pretreatment process and the ambiguous...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2023-12, Vol.15 (51), p.59989-60001 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 60001 |
---|---|
container_issue | 51 |
container_start_page | 59989 |
container_title | ACS applied materials & interfaces |
container_volume | 15 |
creator | Wu, Jing Jiang, Wenjie Gu, Mengshang Sun, Fengxin Han, Chenchen Gong, Hugh |
description | Flexible actuators have garnered significant interest in the domains of biomedical devices, human–machine interfaces, and smart wearables. However, the mechanical properties of existing materials are not sufficiently robust, and the expensive and time-consuming pretreatment process and the ambiguous high-degree-of-freedom deformation mechanism make it difficult to meet the demands of industrialized production. Hence, drawing inspiration from the adaptable movement of living organisms in the natural world, this research created and engineered a fully textile-based humidity-sensitive flexible actuator (TbHs-FA) using high-cost-effective viscose/PET fibers as raw materials. The breakthrough development in actuation performance is covered, including substantial contraction force (92.53 cN), high actuation curvature (16.78 cm–1), and fast response (264 cN s–1 and 46.61 cm–1 s–1). Additionally, the programmable stiffness system and weave structure give TbHs-FAs low hysteresis and fatigue resistance, narrowing the gap between the conceptual laboratory-scale design of existing fully textile-based humidity-sensitive flexible actuators and actual textiles. The high-degree-of-freedom and large bending deformation mechanisms are elucidated for the first time by combining microscopic mechanical structure simulation and macroscopic energy conversion analysis. The novel humidity-sensitive flexible actuator possesses strong mechanical qualities, making it suitable for applications such as flexible robots, medicinal devices, and smart wearables. |
doi_str_mv | 10.1021/acsami.3c16532 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2902957380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2902957380</sourcerecordid><originalsourceid>FETCH-LOGICAL-a285t-793374582f26f5a7b1f5331afcf87d6b2b46aa7da78bebb46e608a1e7ac4b2503</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMotla3LiVLEabmMZnHshTbCgUX9bEcbjKJpkw7Y5JB---NtHbnKjfwnQPnQ-iakjEljN6D8rCxY65oJjg7QUNapmlSMMFOj3eaDtCF92tCMs6IOEcDXpBClCwdotdZo7-tbDSeqNBDaJ3HXzZ84MXu3bVetZ1VeFJDF0DaxoYdNq3Dqw24gN80OIhRj2Fb41VrAp4723Xa-Ut0ZqDx-urwjtDL7OF5ukiWT_PH6WSZACtESPKS8zwVBTMsMwJySY3gnIJRpsjrTDKZZgB5DXkhtYwfnZECqM5BpZIJwkfodt_bufaz1z5UG-uVbhrY6rb3FSsJK0Ue90Z0vEdV3OWdNlXnbNyxqyipfl1We5fVwWUM3By6e7nR9RH_kxeBuz0Qg9W67d02Tv2v7Qd-xH9d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2902957380</pqid></control><display><type>article</type><title>Flexible Actuators with Hygroscopic Adaptability for Smart Wearables and Soft Grippers</title><source>American Chemical Society (ACS) Journals</source><creator>Wu, Jing ; Jiang, Wenjie ; Gu, Mengshang ; Sun, Fengxin ; Han, Chenchen ; Gong, Hugh</creator><creatorcontrib>Wu, Jing ; Jiang, Wenjie ; Gu, Mengshang ; Sun, Fengxin ; Han, Chenchen ; Gong, Hugh</creatorcontrib><description>Flexible actuators have garnered significant interest in the domains of biomedical devices, human–machine interfaces, and smart wearables. However, the mechanical properties of existing materials are not sufficiently robust, and the expensive and time-consuming pretreatment process and the ambiguous high-degree-of-freedom deformation mechanism make it difficult to meet the demands of industrialized production. Hence, drawing inspiration from the adaptable movement of living organisms in the natural world, this research created and engineered a fully textile-based humidity-sensitive flexible actuator (TbHs-FA) using high-cost-effective viscose/PET fibers as raw materials. The breakthrough development in actuation performance is covered, including substantial contraction force (92.53 cN), high actuation curvature (16.78 cm–1), and fast response (264 cN s–1 and 46.61 cm–1 s–1). Additionally, the programmable stiffness system and weave structure give TbHs-FAs low hysteresis and fatigue resistance, narrowing the gap between the conceptual laboratory-scale design of existing fully textile-based humidity-sensitive flexible actuators and actual textiles. The high-degree-of-freedom and large bending deformation mechanisms are elucidated for the first time by combining microscopic mechanical structure simulation and macroscopic energy conversion analysis. The novel humidity-sensitive flexible actuator possesses strong mechanical qualities, making it suitable for applications such as flexible robots, medicinal devices, and smart wearables.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c16532</identifier><identifier>PMID: 38085924</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Surfaces, Interfaces, and Applications</subject><ispartof>ACS applied materials & interfaces, 2023-12, Vol.15 (51), p.59989-60001</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a285t-793374582f26f5a7b1f5331afcf87d6b2b46aa7da78bebb46e608a1e7ac4b2503</cites><orcidid>0000-0002-0677-9129 ; 0000-0002-9842-915X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.3c16532$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.3c16532$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38085924$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Jing</creatorcontrib><creatorcontrib>Jiang, Wenjie</creatorcontrib><creatorcontrib>Gu, Mengshang</creatorcontrib><creatorcontrib>Sun, Fengxin</creatorcontrib><creatorcontrib>Han, Chenchen</creatorcontrib><creatorcontrib>Gong, Hugh</creatorcontrib><title>Flexible Actuators with Hygroscopic Adaptability for Smart Wearables and Soft Grippers</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Flexible actuators have garnered significant interest in the domains of biomedical devices, human–machine interfaces, and smart wearables. However, the mechanical properties of existing materials are not sufficiently robust, and the expensive and time-consuming pretreatment process and the ambiguous high-degree-of-freedom deformation mechanism make it difficult to meet the demands of industrialized production. Hence, drawing inspiration from the adaptable movement of living organisms in the natural world, this research created and engineered a fully textile-based humidity-sensitive flexible actuator (TbHs-FA) using high-cost-effective viscose/PET fibers as raw materials. The breakthrough development in actuation performance is covered, including substantial contraction force (92.53 cN), high actuation curvature (16.78 cm–1), and fast response (264 cN s–1 and 46.61 cm–1 s–1). Additionally, the programmable stiffness system and weave structure give TbHs-FAs low hysteresis and fatigue resistance, narrowing the gap between the conceptual laboratory-scale design of existing fully textile-based humidity-sensitive flexible actuators and actual textiles. The high-degree-of-freedom and large bending deformation mechanisms are elucidated for the first time by combining microscopic mechanical structure simulation and macroscopic energy conversion analysis. The novel humidity-sensitive flexible actuator possesses strong mechanical qualities, making it suitable for applications such as flexible robots, medicinal devices, and smart wearables.</description><subject>Surfaces, Interfaces, and Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMotla3LiVLEabmMZnHshTbCgUX9bEcbjKJpkw7Y5JB---NtHbnKjfwnQPnQ-iakjEljN6D8rCxY65oJjg7QUNapmlSMMFOj3eaDtCF92tCMs6IOEcDXpBClCwdotdZo7-tbDSeqNBDaJ3HXzZ84MXu3bVetZ1VeFJDF0DaxoYdNq3Dqw24gN80OIhRj2Fb41VrAp4723Xa-Ut0ZqDx-urwjtDL7OF5ukiWT_PH6WSZACtESPKS8zwVBTMsMwJySY3gnIJRpsjrTDKZZgB5DXkhtYwfnZECqM5BpZIJwkfodt_bufaz1z5UG-uVbhrY6rb3FSsJK0Ue90Z0vEdV3OWdNlXnbNyxqyipfl1We5fVwWUM3By6e7nR9RH_kxeBuz0Qg9W67d02Tv2v7Qd-xH9d</recordid><startdate>20231227</startdate><enddate>20231227</enddate><creator>Wu, Jing</creator><creator>Jiang, Wenjie</creator><creator>Gu, Mengshang</creator><creator>Sun, Fengxin</creator><creator>Han, Chenchen</creator><creator>Gong, Hugh</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0677-9129</orcidid><orcidid>https://orcid.org/0000-0002-9842-915X</orcidid></search><sort><creationdate>20231227</creationdate><title>Flexible Actuators with Hygroscopic Adaptability for Smart Wearables and Soft Grippers</title><author>Wu, Jing ; Jiang, Wenjie ; Gu, Mengshang ; Sun, Fengxin ; Han, Chenchen ; Gong, Hugh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a285t-793374582f26f5a7b1f5331afcf87d6b2b46aa7da78bebb46e608a1e7ac4b2503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Surfaces, Interfaces, and Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Jing</creatorcontrib><creatorcontrib>Jiang, Wenjie</creatorcontrib><creatorcontrib>Gu, Mengshang</creatorcontrib><creatorcontrib>Sun, Fengxin</creatorcontrib><creatorcontrib>Han, Chenchen</creatorcontrib><creatorcontrib>Gong, Hugh</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Jing</au><au>Jiang, Wenjie</au><au>Gu, Mengshang</au><au>Sun, Fengxin</au><au>Han, Chenchen</au><au>Gong, Hugh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexible Actuators with Hygroscopic Adaptability for Smart Wearables and Soft Grippers</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-12-27</date><risdate>2023</risdate><volume>15</volume><issue>51</issue><spage>59989</spage><epage>60001</epage><pages>59989-60001</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Flexible actuators have garnered significant interest in the domains of biomedical devices, human–machine interfaces, and smart wearables. However, the mechanical properties of existing materials are not sufficiently robust, and the expensive and time-consuming pretreatment process and the ambiguous high-degree-of-freedom deformation mechanism make it difficult to meet the demands of industrialized production. Hence, drawing inspiration from the adaptable movement of living organisms in the natural world, this research created and engineered a fully textile-based humidity-sensitive flexible actuator (TbHs-FA) using high-cost-effective viscose/PET fibers as raw materials. The breakthrough development in actuation performance is covered, including substantial contraction force (92.53 cN), high actuation curvature (16.78 cm–1), and fast response (264 cN s–1 and 46.61 cm–1 s–1). Additionally, the programmable stiffness system and weave structure give TbHs-FAs low hysteresis and fatigue resistance, narrowing the gap between the conceptual laboratory-scale design of existing fully textile-based humidity-sensitive flexible actuators and actual textiles. The high-degree-of-freedom and large bending deformation mechanisms are elucidated for the first time by combining microscopic mechanical structure simulation and macroscopic energy conversion analysis. The novel humidity-sensitive flexible actuator possesses strong mechanical qualities, making it suitable for applications such as flexible robots, medicinal devices, and smart wearables.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38085924</pmid><doi>10.1021/acsami.3c16532</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0677-9129</orcidid><orcidid>https://orcid.org/0000-0002-9842-915X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2023-12, Vol.15 (51), p.59989-60001 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2902957380 |
source | American Chemical Society (ACS) Journals |
subjects | Surfaces, Interfaces, and Applications |
title | Flexible Actuators with Hygroscopic Adaptability for Smart Wearables and Soft Grippers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A38%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexible%20Actuators%20with%20Hygroscopic%20Adaptability%20for%20Smart%20Wearables%20and%20Soft%20Grippers&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Wu,%20Jing&rft.date=2023-12-27&rft.volume=15&rft.issue=51&rft.spage=59989&rft.epage=60001&rft.pages=59989-60001&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c16532&rft_dat=%3Cproquest_cross%3E2902957380%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2902957380&rft_id=info:pmid/38085924&rfr_iscdi=true |