Flexible Actuators with Hygroscopic Adaptability for Smart Wearables and Soft Grippers

Flexible actuators have garnered significant interest in the domains of biomedical devices, human–machine interfaces, and smart wearables. However, the mechanical properties of existing materials are not sufficiently robust, and the expensive and time-consuming pretreatment process and the ambiguous...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2023-12, Vol.15 (51), p.59989-60001
Hauptverfasser: Wu, Jing, Jiang, Wenjie, Gu, Mengshang, Sun, Fengxin, Han, Chenchen, Gong, Hugh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 60001
container_issue 51
container_start_page 59989
container_title ACS applied materials & interfaces
container_volume 15
creator Wu, Jing
Jiang, Wenjie
Gu, Mengshang
Sun, Fengxin
Han, Chenchen
Gong, Hugh
description Flexible actuators have garnered significant interest in the domains of biomedical devices, human–machine interfaces, and smart wearables. However, the mechanical properties of existing materials are not sufficiently robust, and the expensive and time-consuming pretreatment process and the ambiguous high-degree-of-freedom deformation mechanism make it difficult to meet the demands of industrialized production. Hence, drawing inspiration from the adaptable movement of living organisms in the natural world, this research created and engineered a fully textile-based humidity-sensitive flexible actuator (TbHs-FA) using high-cost-effective viscose/PET fibers as raw materials. The breakthrough development in actuation performance is covered, including substantial contraction force (92.53 cN), high actuation curvature (16.78 cm–1), and fast response (264 cN s–1 and 46.61 cm–1 s–1). Additionally, the programmable stiffness system and weave structure give TbHs-FAs low hysteresis and fatigue resistance, narrowing the gap between the conceptual laboratory-scale design of existing fully textile-based humidity-sensitive flexible actuators and actual textiles. The high-degree-of-freedom and large bending deformation mechanisms are elucidated for the first time by combining microscopic mechanical structure simulation and macroscopic energy conversion analysis. The novel humidity-sensitive flexible actuator possesses strong mechanical qualities, making it suitable for applications such as flexible robots, medicinal devices, and smart wearables.
doi_str_mv 10.1021/acsami.3c16532
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2902957380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2902957380</sourcerecordid><originalsourceid>FETCH-LOGICAL-a285t-793374582f26f5a7b1f5331afcf87d6b2b46aa7da78bebb46e608a1e7ac4b2503</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMotla3LiVLEabmMZnHshTbCgUX9bEcbjKJpkw7Y5JB---NtHbnKjfwnQPnQ-iakjEljN6D8rCxY65oJjg7QUNapmlSMMFOj3eaDtCF92tCMs6IOEcDXpBClCwdotdZo7-tbDSeqNBDaJ3HXzZ84MXu3bVetZ1VeFJDF0DaxoYdNq3Dqw24gN80OIhRj2Fb41VrAp4723Xa-Ut0ZqDx-urwjtDL7OF5ukiWT_PH6WSZACtESPKS8zwVBTMsMwJySY3gnIJRpsjrTDKZZgB5DXkhtYwfnZECqM5BpZIJwkfodt_bufaz1z5UG-uVbhrY6rb3FSsJK0Ue90Z0vEdV3OWdNlXnbNyxqyipfl1We5fVwWUM3By6e7nR9RH_kxeBuz0Qg9W67d02Tv2v7Qd-xH9d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2902957380</pqid></control><display><type>article</type><title>Flexible Actuators with Hygroscopic Adaptability for Smart Wearables and Soft Grippers</title><source>American Chemical Society (ACS) Journals</source><creator>Wu, Jing ; Jiang, Wenjie ; Gu, Mengshang ; Sun, Fengxin ; Han, Chenchen ; Gong, Hugh</creator><creatorcontrib>Wu, Jing ; Jiang, Wenjie ; Gu, Mengshang ; Sun, Fengxin ; Han, Chenchen ; Gong, Hugh</creatorcontrib><description>Flexible actuators have garnered significant interest in the domains of biomedical devices, human–machine interfaces, and smart wearables. However, the mechanical properties of existing materials are not sufficiently robust, and the expensive and time-consuming pretreatment process and the ambiguous high-degree-of-freedom deformation mechanism make it difficult to meet the demands of industrialized production. Hence, drawing inspiration from the adaptable movement of living organisms in the natural world, this research created and engineered a fully textile-based humidity-sensitive flexible actuator (TbHs-FA) using high-cost-effective viscose/PET fibers as raw materials. The breakthrough development in actuation performance is covered, including substantial contraction force (92.53 cN), high actuation curvature (16.78 cm–1), and fast response (264 cN s–1 and 46.61 cm–1 s–1). Additionally, the programmable stiffness system and weave structure give TbHs-FAs low hysteresis and fatigue resistance, narrowing the gap between the conceptual laboratory-scale design of existing fully textile-based humidity-sensitive flexible actuators and actual textiles. The high-degree-of-freedom and large bending deformation mechanisms are elucidated for the first time by combining microscopic mechanical structure simulation and macroscopic energy conversion analysis. The novel humidity-sensitive flexible actuator possesses strong mechanical qualities, making it suitable for applications such as flexible robots, medicinal devices, and smart wearables.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c16532</identifier><identifier>PMID: 38085924</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Surfaces, Interfaces, and Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2023-12, Vol.15 (51), p.59989-60001</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a285t-793374582f26f5a7b1f5331afcf87d6b2b46aa7da78bebb46e608a1e7ac4b2503</cites><orcidid>0000-0002-0677-9129 ; 0000-0002-9842-915X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.3c16532$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.3c16532$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38085924$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Jing</creatorcontrib><creatorcontrib>Jiang, Wenjie</creatorcontrib><creatorcontrib>Gu, Mengshang</creatorcontrib><creatorcontrib>Sun, Fengxin</creatorcontrib><creatorcontrib>Han, Chenchen</creatorcontrib><creatorcontrib>Gong, Hugh</creatorcontrib><title>Flexible Actuators with Hygroscopic Adaptability for Smart Wearables and Soft Grippers</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Flexible actuators have garnered significant interest in the domains of biomedical devices, human–machine interfaces, and smart wearables. However, the mechanical properties of existing materials are not sufficiently robust, and the expensive and time-consuming pretreatment process and the ambiguous high-degree-of-freedom deformation mechanism make it difficult to meet the demands of industrialized production. Hence, drawing inspiration from the adaptable movement of living organisms in the natural world, this research created and engineered a fully textile-based humidity-sensitive flexible actuator (TbHs-FA) using high-cost-effective viscose/PET fibers as raw materials. The breakthrough development in actuation performance is covered, including substantial contraction force (92.53 cN), high actuation curvature (16.78 cm–1), and fast response (264 cN s–1 and 46.61 cm–1 s–1). Additionally, the programmable stiffness system and weave structure give TbHs-FAs low hysteresis and fatigue resistance, narrowing the gap between the conceptual laboratory-scale design of existing fully textile-based humidity-sensitive flexible actuators and actual textiles. The high-degree-of-freedom and large bending deformation mechanisms are elucidated for the first time by combining microscopic mechanical structure simulation and macroscopic energy conversion analysis. The novel humidity-sensitive flexible actuator possesses strong mechanical qualities, making it suitable for applications such as flexible robots, medicinal devices, and smart wearables.</description><subject>Surfaces, Interfaces, and Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMotla3LiVLEabmMZnHshTbCgUX9bEcbjKJpkw7Y5JB---NtHbnKjfwnQPnQ-iakjEljN6D8rCxY65oJjg7QUNapmlSMMFOj3eaDtCF92tCMs6IOEcDXpBClCwdotdZo7-tbDSeqNBDaJ3HXzZ84MXu3bVetZ1VeFJDF0DaxoYdNq3Dqw24gN80OIhRj2Fb41VrAp4723Xa-Ut0ZqDx-urwjtDL7OF5ukiWT_PH6WSZACtESPKS8zwVBTMsMwJySY3gnIJRpsjrTDKZZgB5DXkhtYwfnZECqM5BpZIJwkfodt_bufaz1z5UG-uVbhrY6rb3FSsJK0Ue90Z0vEdV3OWdNlXnbNyxqyipfl1We5fVwWUM3By6e7nR9RH_kxeBuz0Qg9W67d02Tv2v7Qd-xH9d</recordid><startdate>20231227</startdate><enddate>20231227</enddate><creator>Wu, Jing</creator><creator>Jiang, Wenjie</creator><creator>Gu, Mengshang</creator><creator>Sun, Fengxin</creator><creator>Han, Chenchen</creator><creator>Gong, Hugh</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0677-9129</orcidid><orcidid>https://orcid.org/0000-0002-9842-915X</orcidid></search><sort><creationdate>20231227</creationdate><title>Flexible Actuators with Hygroscopic Adaptability for Smart Wearables and Soft Grippers</title><author>Wu, Jing ; Jiang, Wenjie ; Gu, Mengshang ; Sun, Fengxin ; Han, Chenchen ; Gong, Hugh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a285t-793374582f26f5a7b1f5331afcf87d6b2b46aa7da78bebb46e608a1e7ac4b2503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Surfaces, Interfaces, and Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Jing</creatorcontrib><creatorcontrib>Jiang, Wenjie</creatorcontrib><creatorcontrib>Gu, Mengshang</creatorcontrib><creatorcontrib>Sun, Fengxin</creatorcontrib><creatorcontrib>Han, Chenchen</creatorcontrib><creatorcontrib>Gong, Hugh</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Jing</au><au>Jiang, Wenjie</au><au>Gu, Mengshang</au><au>Sun, Fengxin</au><au>Han, Chenchen</au><au>Gong, Hugh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexible Actuators with Hygroscopic Adaptability for Smart Wearables and Soft Grippers</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-12-27</date><risdate>2023</risdate><volume>15</volume><issue>51</issue><spage>59989</spage><epage>60001</epage><pages>59989-60001</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Flexible actuators have garnered significant interest in the domains of biomedical devices, human–machine interfaces, and smart wearables. However, the mechanical properties of existing materials are not sufficiently robust, and the expensive and time-consuming pretreatment process and the ambiguous high-degree-of-freedom deformation mechanism make it difficult to meet the demands of industrialized production. Hence, drawing inspiration from the adaptable movement of living organisms in the natural world, this research created and engineered a fully textile-based humidity-sensitive flexible actuator (TbHs-FA) using high-cost-effective viscose/PET fibers as raw materials. The breakthrough development in actuation performance is covered, including substantial contraction force (92.53 cN), high actuation curvature (16.78 cm–1), and fast response (264 cN s–1 and 46.61 cm–1 s–1). Additionally, the programmable stiffness system and weave structure give TbHs-FAs low hysteresis and fatigue resistance, narrowing the gap between the conceptual laboratory-scale design of existing fully textile-based humidity-sensitive flexible actuators and actual textiles. The high-degree-of-freedom and large bending deformation mechanisms are elucidated for the first time by combining microscopic mechanical structure simulation and macroscopic energy conversion analysis. The novel humidity-sensitive flexible actuator possesses strong mechanical qualities, making it suitable for applications such as flexible robots, medicinal devices, and smart wearables.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38085924</pmid><doi>10.1021/acsami.3c16532</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0677-9129</orcidid><orcidid>https://orcid.org/0000-0002-9842-915X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2023-12, Vol.15 (51), p.59989-60001
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2902957380
source American Chemical Society (ACS) Journals
subjects Surfaces, Interfaces, and Applications
title Flexible Actuators with Hygroscopic Adaptability for Smart Wearables and Soft Grippers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A38%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexible%20Actuators%20with%20Hygroscopic%20Adaptability%20for%20Smart%20Wearables%20and%20Soft%20Grippers&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Wu,%20Jing&rft.date=2023-12-27&rft.volume=15&rft.issue=51&rft.spage=59989&rft.epage=60001&rft.pages=59989-60001&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c16532&rft_dat=%3Cproquest_cross%3E2902957380%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2902957380&rft_id=info:pmid/38085924&rfr_iscdi=true