Study on Microstructure and Properties of WC Particle-Reinforced FeCoCrNi-Matrix High Entropy Alloy Composites

In recent years, high entropy alloy (HEA) matrix composites have undergone rapid development. In this work, the effects of different WC contents (10 wt.%, 20 wt.%, and 30 wt.%) on the microstructure, mechanical properties, and wear resistance of FeCoCrNi HEA matrix composites prepared by spark plasm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2023-11, Vol.16 (23), p.7380
Hauptverfasser: Zhang, Chenglin, Luo, Xian, Ma, Liufang, Hou, Le, Huang, Bin, Hu, Rui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 23
container_start_page 7380
container_title Materials
container_volume 16
creator Zhang, Chenglin
Luo, Xian
Ma, Liufang
Hou, Le
Huang, Bin
Hu, Rui
description In recent years, high entropy alloy (HEA) matrix composites have undergone rapid development. In this work, the effects of different WC contents (10 wt.%, 20 wt.%, and 30 wt.%) on the microstructure, mechanical properties, and wear resistance of FeCoCrNi HEA matrix composites prepared by spark plasma sintering (SPS) were studied. The results show that the WC-HEA composites are mainly composed of an FCC matrix phase (Ni, Fe) and carbide phases (Cr C , Co W C, WC, etc.). The hardness of the 30 WC-HEA composites was the highest at 459.2 HV, which is 71.2% higher than the 268.3 HV of the pure matrix material. Similarly, the compressive yield strength of the 30 WC-HEA composite was the largest, reaching 1315.1 MPa, which is 112.1% higher than that of the pure matrix material. However, the compression deformation rate of the 30 WC-HEA composite significantly decreased to 16.6%. Under the same dry friction conditions, the addition of an appropriate amount of WC particles can reduce the friction coefficient of the HEA matrix. The wear volume of the composites decreased rapidly with the increase of WC content. The wear volume of 30 WC-HEA was the lowest, only 3.17% of that of the pure matrix material.
doi_str_mv 10.3390/ma16237380
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2902951655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A775890818</galeid><sourcerecordid>A775890818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-baf7357b30209cbfd565060f0cbc7bf61a6200d2a80aa57ce1807bb4e024274e3</originalsourceid><addsrcrecordid>eNpdkU1r3DAQhkVpaUKaS39AEfRSAk5Hkm1Jx8UkTSBpQz_o0cjyKFWwra0kQ_ffR8umH3R0GGl4XjEzLyGvGZwLoeH9bFjLhRQKnpFjpnVbMV3Xz_-5H5HTlB6ghBBMcf2SHBW6VYyLY7J8yeu4o2Ght97GkHJcbV4jUrOM9C6GLcbsMdHg6PeO3pnyshNWn9EvLkSLI73ELnTxo69uTY7-F73y9z_oxZKLdkc30xR2tAvzNiSfMb0iL5yZEp4-5RPy7fLia3dV3Xz6cN1tbipbZsrVYJwUjRwEcNB2cGPTNtCCAztYObiWmZYDjNwoMKaRFpkCOQw1Aq-5rFGckHeHf7cx_Fwx5X72yeI0mQXDmnqugeuGtU1T0Lf_oQ9hjUvprudK61oAA1ao8wN1bybs98PnaGw5I87ehgWdL_WNlI3SoJgqgrODYL_VFNH12-hnE3c9g37vXP_XuQK_eephHWYc_6C_fRKPJn6SPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899430101</pqid></control><display><type>article</type><title>Study on Microstructure and Properties of WC Particle-Reinforced FeCoCrNi-Matrix High Entropy Alloy Composites</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Zhang, Chenglin ; Luo, Xian ; Ma, Liufang ; Hou, Le ; Huang, Bin ; Hu, Rui</creator><creatorcontrib>Zhang, Chenglin ; Luo, Xian ; Ma, Liufang ; Hou, Le ; Huang, Bin ; Hu, Rui</creatorcontrib><description>In recent years, high entropy alloy (HEA) matrix composites have undergone rapid development. In this work, the effects of different WC contents (10 wt.%, 20 wt.%, and 30 wt.%) on the microstructure, mechanical properties, and wear resistance of FeCoCrNi HEA matrix composites prepared by spark plasma sintering (SPS) were studied. The results show that the WC-HEA composites are mainly composed of an FCC matrix phase (Ni, Fe) and carbide phases (Cr C , Co W C, WC, etc.). The hardness of the 30 WC-HEA composites was the highest at 459.2 HV, which is 71.2% higher than the 268.3 HV of the pure matrix material. Similarly, the compressive yield strength of the 30 WC-HEA composite was the largest, reaching 1315.1 MPa, which is 112.1% higher than that of the pure matrix material. However, the compression deformation rate of the 30 WC-HEA composite significantly decreased to 16.6%. Under the same dry friction conditions, the addition of an appropriate amount of WC particles can reduce the friction coefficient of the HEA matrix. The wear volume of the composites decreased rapidly with the increase of WC content. The wear volume of 30 WC-HEA was the lowest, only 3.17% of that of the pure matrix material.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16237380</identifier><identifier>PMID: 38068123</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Alloys ; Analysis ; Coefficient of friction ; Compressive strength ; Corrosion ; Dry friction ; Entropy ; Friction reduction ; Graphite ; High entropy alloys ; Mechanical properties ; Microstructure ; Particulate composites ; Process controls ; Raw materials ; Sintering ; Solid solutions ; Spark plasma sintering ; Stainless steel ; Stress concentration ; Tensile strength ; Tungsten carbide ; Wear resistance ; Yield stress</subject><ispartof>Materials, 2023-11, Vol.16 (23), p.7380</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-baf7357b30209cbfd565060f0cbc7bf61a6200d2a80aa57ce1807bb4e024274e3</citedby><cites>FETCH-LOGICAL-c390t-baf7357b30209cbfd565060f0cbc7bf61a6200d2a80aa57ce1807bb4e024274e3</cites><orcidid>0009-0000-8304-417X ; 0000-0001-9089-3508</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38068123$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Chenglin</creatorcontrib><creatorcontrib>Luo, Xian</creatorcontrib><creatorcontrib>Ma, Liufang</creatorcontrib><creatorcontrib>Hou, Le</creatorcontrib><creatorcontrib>Huang, Bin</creatorcontrib><creatorcontrib>Hu, Rui</creatorcontrib><title>Study on Microstructure and Properties of WC Particle-Reinforced FeCoCrNi-Matrix High Entropy Alloy Composites</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>In recent years, high entropy alloy (HEA) matrix composites have undergone rapid development. In this work, the effects of different WC contents (10 wt.%, 20 wt.%, and 30 wt.%) on the microstructure, mechanical properties, and wear resistance of FeCoCrNi HEA matrix composites prepared by spark plasma sintering (SPS) were studied. The results show that the WC-HEA composites are mainly composed of an FCC matrix phase (Ni, Fe) and carbide phases (Cr C , Co W C, WC, etc.). The hardness of the 30 WC-HEA composites was the highest at 459.2 HV, which is 71.2% higher than the 268.3 HV of the pure matrix material. Similarly, the compressive yield strength of the 30 WC-HEA composite was the largest, reaching 1315.1 MPa, which is 112.1% higher than that of the pure matrix material. However, the compression deformation rate of the 30 WC-HEA composite significantly decreased to 16.6%. Under the same dry friction conditions, the addition of an appropriate amount of WC particles can reduce the friction coefficient of the HEA matrix. The wear volume of the composites decreased rapidly with the increase of WC content. The wear volume of 30 WC-HEA was the lowest, only 3.17% of that of the pure matrix material.</description><subject>Alloys</subject><subject>Analysis</subject><subject>Coefficient of friction</subject><subject>Compressive strength</subject><subject>Corrosion</subject><subject>Dry friction</subject><subject>Entropy</subject><subject>Friction reduction</subject><subject>Graphite</subject><subject>High entropy alloys</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Particulate composites</subject><subject>Process controls</subject><subject>Raw materials</subject><subject>Sintering</subject><subject>Solid solutions</subject><subject>Spark plasma sintering</subject><subject>Stainless steel</subject><subject>Stress concentration</subject><subject>Tensile strength</subject><subject>Tungsten carbide</subject><subject>Wear resistance</subject><subject>Yield stress</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkU1r3DAQhkVpaUKaS39AEfRSAk5Hkm1Jx8UkTSBpQz_o0cjyKFWwra0kQ_ffR8umH3R0GGl4XjEzLyGvGZwLoeH9bFjLhRQKnpFjpnVbMV3Xz_-5H5HTlB6ghBBMcf2SHBW6VYyLY7J8yeu4o2Ght97GkHJcbV4jUrOM9C6GLcbsMdHg6PeO3pnyshNWn9EvLkSLI73ELnTxo69uTY7-F73y9z_oxZKLdkc30xR2tAvzNiSfMb0iL5yZEp4-5RPy7fLia3dV3Xz6cN1tbipbZsrVYJwUjRwEcNB2cGPTNtCCAztYObiWmZYDjNwoMKaRFpkCOQw1Aq-5rFGckHeHf7cx_Fwx5X72yeI0mQXDmnqugeuGtU1T0Lf_oQ9hjUvprudK61oAA1ao8wN1bybs98PnaGw5I87ehgWdL_WNlI3SoJgqgrODYL_VFNH12-hnE3c9g37vXP_XuQK_eephHWYc_6C_fRKPJn6SPw</recordid><startdate>20231127</startdate><enddate>20231127</enddate><creator>Zhang, Chenglin</creator><creator>Luo, Xian</creator><creator>Ma, Liufang</creator><creator>Hou, Le</creator><creator>Huang, Bin</creator><creator>Hu, Rui</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0000-8304-417X</orcidid><orcidid>https://orcid.org/0000-0001-9089-3508</orcidid></search><sort><creationdate>20231127</creationdate><title>Study on Microstructure and Properties of WC Particle-Reinforced FeCoCrNi-Matrix High Entropy Alloy Composites</title><author>Zhang, Chenglin ; Luo, Xian ; Ma, Liufang ; Hou, Le ; Huang, Bin ; Hu, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-baf7357b30209cbfd565060f0cbc7bf61a6200d2a80aa57ce1807bb4e024274e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alloys</topic><topic>Analysis</topic><topic>Coefficient of friction</topic><topic>Compressive strength</topic><topic>Corrosion</topic><topic>Dry friction</topic><topic>Entropy</topic><topic>Friction reduction</topic><topic>Graphite</topic><topic>High entropy alloys</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Particulate composites</topic><topic>Process controls</topic><topic>Raw materials</topic><topic>Sintering</topic><topic>Solid solutions</topic><topic>Spark plasma sintering</topic><topic>Stainless steel</topic><topic>Stress concentration</topic><topic>Tensile strength</topic><topic>Tungsten carbide</topic><topic>Wear resistance</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Chenglin</creatorcontrib><creatorcontrib>Luo, Xian</creatorcontrib><creatorcontrib>Ma, Liufang</creatorcontrib><creatorcontrib>Hou, Le</creatorcontrib><creatorcontrib>Huang, Bin</creatorcontrib><creatorcontrib>Hu, Rui</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Chenglin</au><au>Luo, Xian</au><au>Ma, Liufang</au><au>Hou, Le</au><au>Huang, Bin</au><au>Hu, Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on Microstructure and Properties of WC Particle-Reinforced FeCoCrNi-Matrix High Entropy Alloy Composites</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2023-11-27</date><risdate>2023</risdate><volume>16</volume><issue>23</issue><spage>7380</spage><pages>7380-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>In recent years, high entropy alloy (HEA) matrix composites have undergone rapid development. In this work, the effects of different WC contents (10 wt.%, 20 wt.%, and 30 wt.%) on the microstructure, mechanical properties, and wear resistance of FeCoCrNi HEA matrix composites prepared by spark plasma sintering (SPS) were studied. The results show that the WC-HEA composites are mainly composed of an FCC matrix phase (Ni, Fe) and carbide phases (Cr C , Co W C, WC, etc.). The hardness of the 30 WC-HEA composites was the highest at 459.2 HV, which is 71.2% higher than the 268.3 HV of the pure matrix material. Similarly, the compressive yield strength of the 30 WC-HEA composite was the largest, reaching 1315.1 MPa, which is 112.1% higher than that of the pure matrix material. However, the compression deformation rate of the 30 WC-HEA composite significantly decreased to 16.6%. Under the same dry friction conditions, the addition of an appropriate amount of WC particles can reduce the friction coefficient of the HEA matrix. The wear volume of the composites decreased rapidly with the increase of WC content. The wear volume of 30 WC-HEA was the lowest, only 3.17% of that of the pure matrix material.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38068123</pmid><doi>10.3390/ma16237380</doi><orcidid>https://orcid.org/0009-0000-8304-417X</orcidid><orcidid>https://orcid.org/0000-0001-9089-3508</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2023-11, Vol.16 (23), p.7380
issn 1996-1944
1996-1944
language eng
recordid cdi_proquest_miscellaneous_2902951655
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Alloys
Analysis
Coefficient of friction
Compressive strength
Corrosion
Dry friction
Entropy
Friction reduction
Graphite
High entropy alloys
Mechanical properties
Microstructure
Particulate composites
Process controls
Raw materials
Sintering
Solid solutions
Spark plasma sintering
Stainless steel
Stress concentration
Tensile strength
Tungsten carbide
Wear resistance
Yield stress
title Study on Microstructure and Properties of WC Particle-Reinforced FeCoCrNi-Matrix High Entropy Alloy Composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A44%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20Microstructure%20and%20Properties%20of%20WC%20Particle-Reinforced%20FeCoCrNi-Matrix%20High%20Entropy%20Alloy%20Composites&rft.jtitle=Materials&rft.au=Zhang,%20Chenglin&rft.date=2023-11-27&rft.volume=16&rft.issue=23&rft.spage=7380&rft.pages=7380-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16237380&rft_dat=%3Cgale_proqu%3EA775890818%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2899430101&rft_id=info:pmid/38068123&rft_galeid=A775890818&rfr_iscdi=true