Data-Driven Prediction and Uncertainty Quantification of Process Parameters for Directed Energy Deposition

Laser-based directed energy deposition using metal powder (DED-LB/M) offers great potential for a flexible production mainly defined by software. To exploit this potential, knowledge of the process parameters required to achieve a specific track geometry is essential. Existing analytical, numerical,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2023-11, Vol.16 (23), p.7308
Hauptverfasser: Hermann, Florian, Michalowski, Andreas, Brünnette, Tim, Reimann, Peter, Vogt, Sabrina, Graf, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 23
container_start_page 7308
container_title Materials
container_volume 16
creator Hermann, Florian
Michalowski, Andreas
Brünnette, Tim
Reimann, Peter
Vogt, Sabrina
Graf, Thomas
description Laser-based directed energy deposition using metal powder (DED-LB/M) offers great potential for a flexible production mainly defined by software. To exploit this potential, knowledge of the process parameters required to achieve a specific track geometry is essential. Existing analytical, numerical, and machine-learning approaches, however, are not yet able to predict the process parameters in a satisfactory way. A trial-&-error approach is therefore usually applied to find the best process parameters. This paper presents a novel user-centric decision-making workflow, in which several combinations of process parameters that are most likely to yield the desired track geometry are proposed to the user. For this purpose, a Gaussian Process Regression (GPR) model, which has the advantage of including uncertainty quantification (UQ), was trained with experimental data to predict the geometry of single DED tracks based on the process parameters. The inherent UQ of the GPR together with the expert knowledge of the user can subsequently be leveraged for the inverse question of finding the best sets of process parameters by minimizing the expected squared deviation between target and actual track geometry. The GPR was trained and validated with a total of 379 cross sections of single tracks and the benefit of the workflow is demonstrated by two exemplary use cases.
doi_str_mv 10.3390/ma16237308
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2902951430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A775890746</galeid><sourcerecordid>A775890746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-a60f52a776a3977c90c70ec4e2ae29ffc857939ef0e9697e41d8220047fa94ef3</originalsourceid><addsrcrecordid>eNpdkVFLHDEQx0NpUbG-9AOUQF9KYTWbZDc7j-LZVhBU0Odlmp1IjtvkmmQL9-0be9oWZx5mmPn9h4E_Yx9acaoUiLMZ214qo8Twhh21AH3TgtZv_-sP2UnOa1FDqXaQcMAO1SD6QXTyiK1XWLBZJf-LAr9NNHlbfAwcw8QfgqVU0Iey43cLhuKdt_hnHV2Fo6Wc-S0mnKlQytzFxFc-kS008ctA6XHHV7SN2T-J3rN3DjeZTp7rMXv4enl_8b25vvl2dXF-3ViloTTYC9dJNKZHBcZYENYIspokkgTn7NAZUEBOEPRgSLfTIKUQ2jgETU4ds8_7u9sUfy6Uyzj7bGmzwUBxyaMEIaFrtRIV_fQKXcclhfrdKAcALXuhdKVO99Qjbmj0wcWS0NacaPY2BnK-zs-N6QYQRvdV8GUvsCnmnMiN2-RnTLuxFeOTa-M_1yr88fmH5cdM01_0xSP1G0YvkV4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899426034</pqid></control><display><type>article</type><title>Data-Driven Prediction and Uncertainty Quantification of Process Parameters for Directed Energy Deposition</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Hermann, Florian ; Michalowski, Andreas ; Brünnette, Tim ; Reimann, Peter ; Vogt, Sabrina ; Graf, Thomas</creator><creatorcontrib>Hermann, Florian ; Michalowski, Andreas ; Brünnette, Tim ; Reimann, Peter ; Vogt, Sabrina ; Graf, Thomas</creatorcontrib><description>Laser-based directed energy deposition using metal powder (DED-LB/M) offers great potential for a flexible production mainly defined by software. To exploit this potential, knowledge of the process parameters required to achieve a specific track geometry is essential. Existing analytical, numerical, and machine-learning approaches, however, are not yet able to predict the process parameters in a satisfactory way. A trial-&amp;-error approach is therefore usually applied to find the best process parameters. This paper presents a novel user-centric decision-making workflow, in which several combinations of process parameters that are most likely to yield the desired track geometry are proposed to the user. For this purpose, a Gaussian Process Regression (GPR) model, which has the advantage of including uncertainty quantification (UQ), was trained with experimental data to predict the geometry of single DED tracks based on the process parameters. The inherent UQ of the GPR together with the expert knowledge of the user can subsequently be leveraged for the inverse question of finding the best sets of process parameters by minimizing the expected squared deviation between target and actual track geometry. The GPR was trained and validated with a total of 379 cross sections of single tracks and the benefit of the workflow is demonstrated by two exemplary use cases.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16237308</identifier><identifier>PMID: 38068052</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Additive manufacturing ; Decision-making ; Deposition ; Expected values ; Gaussian process ; Geometry ; Heat ; Laser applications ; Lasers ; Machine learning ; Mechanical properties ; Metal powder products ; Metal powders ; Optimization algorithms ; Physics ; Process parameters ; Regression models ; Software ; Tracking ; Uncertainty ; Workflow</subject><ispartof>Materials, 2023-11, Vol.16 (23), p.7308</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c349t-a60f52a776a3977c90c70ec4e2ae29ffc857939ef0e9697e41d8220047fa94ef3</cites><orcidid>0000-0002-6355-4591 ; 0000-0001-7543-0513 ; 0000-0002-8466-073X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38068052$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hermann, Florian</creatorcontrib><creatorcontrib>Michalowski, Andreas</creatorcontrib><creatorcontrib>Brünnette, Tim</creatorcontrib><creatorcontrib>Reimann, Peter</creatorcontrib><creatorcontrib>Vogt, Sabrina</creatorcontrib><creatorcontrib>Graf, Thomas</creatorcontrib><title>Data-Driven Prediction and Uncertainty Quantification of Process Parameters for Directed Energy Deposition</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Laser-based directed energy deposition using metal powder (DED-LB/M) offers great potential for a flexible production mainly defined by software. To exploit this potential, knowledge of the process parameters required to achieve a specific track geometry is essential. Existing analytical, numerical, and machine-learning approaches, however, are not yet able to predict the process parameters in a satisfactory way. A trial-&amp;-error approach is therefore usually applied to find the best process parameters. This paper presents a novel user-centric decision-making workflow, in which several combinations of process parameters that are most likely to yield the desired track geometry are proposed to the user. For this purpose, a Gaussian Process Regression (GPR) model, which has the advantage of including uncertainty quantification (UQ), was trained with experimental data to predict the geometry of single DED tracks based on the process parameters. The inherent UQ of the GPR together with the expert knowledge of the user can subsequently be leveraged for the inverse question of finding the best sets of process parameters by minimizing the expected squared deviation between target and actual track geometry. The GPR was trained and validated with a total of 379 cross sections of single tracks and the benefit of the workflow is demonstrated by two exemplary use cases.</description><subject>Accuracy</subject><subject>Additive manufacturing</subject><subject>Decision-making</subject><subject>Deposition</subject><subject>Expected values</subject><subject>Gaussian process</subject><subject>Geometry</subject><subject>Heat</subject><subject>Laser applications</subject><subject>Lasers</subject><subject>Machine learning</subject><subject>Mechanical properties</subject><subject>Metal powder products</subject><subject>Metal powders</subject><subject>Optimization algorithms</subject><subject>Physics</subject><subject>Process parameters</subject><subject>Regression models</subject><subject>Software</subject><subject>Tracking</subject><subject>Uncertainty</subject><subject>Workflow</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkVFLHDEQx0NpUbG-9AOUQF9KYTWbZDc7j-LZVhBU0Odlmp1IjtvkmmQL9-0be9oWZx5mmPn9h4E_Yx9acaoUiLMZ214qo8Twhh21AH3TgtZv_-sP2UnOa1FDqXaQcMAO1SD6QXTyiK1XWLBZJf-LAr9NNHlbfAwcw8QfgqVU0Iey43cLhuKdt_hnHV2Fo6Wc-S0mnKlQytzFxFc-kS008ctA6XHHV7SN2T-J3rN3DjeZTp7rMXv4enl_8b25vvl2dXF-3ViloTTYC9dJNKZHBcZYENYIspokkgTn7NAZUEBOEPRgSLfTIKUQ2jgETU4ds8_7u9sUfy6Uyzj7bGmzwUBxyaMEIaFrtRIV_fQKXcclhfrdKAcALXuhdKVO99Qjbmj0wcWS0NacaPY2BnK-zs-N6QYQRvdV8GUvsCnmnMiN2-RnTLuxFeOTa-M_1yr88fmH5cdM01_0xSP1G0YvkV4</recordid><startdate>20231124</startdate><enddate>20231124</enddate><creator>Hermann, Florian</creator><creator>Michalowski, Andreas</creator><creator>Brünnette, Tim</creator><creator>Reimann, Peter</creator><creator>Vogt, Sabrina</creator><creator>Graf, Thomas</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6355-4591</orcidid><orcidid>https://orcid.org/0000-0001-7543-0513</orcidid><orcidid>https://orcid.org/0000-0002-8466-073X</orcidid></search><sort><creationdate>20231124</creationdate><title>Data-Driven Prediction and Uncertainty Quantification of Process Parameters for Directed Energy Deposition</title><author>Hermann, Florian ; Michalowski, Andreas ; Brünnette, Tim ; Reimann, Peter ; Vogt, Sabrina ; Graf, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-a60f52a776a3977c90c70ec4e2ae29ffc857939ef0e9697e41d8220047fa94ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Additive manufacturing</topic><topic>Decision-making</topic><topic>Deposition</topic><topic>Expected values</topic><topic>Gaussian process</topic><topic>Geometry</topic><topic>Heat</topic><topic>Laser applications</topic><topic>Lasers</topic><topic>Machine learning</topic><topic>Mechanical properties</topic><topic>Metal powder products</topic><topic>Metal powders</topic><topic>Optimization algorithms</topic><topic>Physics</topic><topic>Process parameters</topic><topic>Regression models</topic><topic>Software</topic><topic>Tracking</topic><topic>Uncertainty</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hermann, Florian</creatorcontrib><creatorcontrib>Michalowski, Andreas</creatorcontrib><creatorcontrib>Brünnette, Tim</creatorcontrib><creatorcontrib>Reimann, Peter</creatorcontrib><creatorcontrib>Vogt, Sabrina</creatorcontrib><creatorcontrib>Graf, Thomas</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hermann, Florian</au><au>Michalowski, Andreas</au><au>Brünnette, Tim</au><au>Reimann, Peter</au><au>Vogt, Sabrina</au><au>Graf, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Driven Prediction and Uncertainty Quantification of Process Parameters for Directed Energy Deposition</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2023-11-24</date><risdate>2023</risdate><volume>16</volume><issue>23</issue><spage>7308</spage><pages>7308-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Laser-based directed energy deposition using metal powder (DED-LB/M) offers great potential for a flexible production mainly defined by software. To exploit this potential, knowledge of the process parameters required to achieve a specific track geometry is essential. Existing analytical, numerical, and machine-learning approaches, however, are not yet able to predict the process parameters in a satisfactory way. A trial-&amp;-error approach is therefore usually applied to find the best process parameters. This paper presents a novel user-centric decision-making workflow, in which several combinations of process parameters that are most likely to yield the desired track geometry are proposed to the user. For this purpose, a Gaussian Process Regression (GPR) model, which has the advantage of including uncertainty quantification (UQ), was trained with experimental data to predict the geometry of single DED tracks based on the process parameters. The inherent UQ of the GPR together with the expert knowledge of the user can subsequently be leveraged for the inverse question of finding the best sets of process parameters by minimizing the expected squared deviation between target and actual track geometry. The GPR was trained and validated with a total of 379 cross sections of single tracks and the benefit of the workflow is demonstrated by two exemplary use cases.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38068052</pmid><doi>10.3390/ma16237308</doi><orcidid>https://orcid.org/0000-0002-6355-4591</orcidid><orcidid>https://orcid.org/0000-0001-7543-0513</orcidid><orcidid>https://orcid.org/0000-0002-8466-073X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2023-11, Vol.16 (23), p.7308
issn 1996-1944
1996-1944
language eng
recordid cdi_proquest_miscellaneous_2902951430
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Accuracy
Additive manufacturing
Decision-making
Deposition
Expected values
Gaussian process
Geometry
Heat
Laser applications
Lasers
Machine learning
Mechanical properties
Metal powder products
Metal powders
Optimization algorithms
Physics
Process parameters
Regression models
Software
Tracking
Uncertainty
Workflow
title Data-Driven Prediction and Uncertainty Quantification of Process Parameters for Directed Energy Deposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T16%3A48%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Driven%20Prediction%20and%20Uncertainty%20Quantification%20of%20Process%20Parameters%20for%20Directed%20Energy%20Deposition&rft.jtitle=Materials&rft.au=Hermann,%20Florian&rft.date=2023-11-24&rft.volume=16&rft.issue=23&rft.spage=7308&rft.pages=7308-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16237308&rft_dat=%3Cgale_proqu%3EA775890746%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2899426034&rft_id=info:pmid/38068052&rft_galeid=A775890746&rfr_iscdi=true